• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
CHEN Haoxiang, WANG Mingyang, LI Jie, JIANG Haiming. Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0470
Citation: CHEN Haoxiang, WANG Mingyang, LI Jie, JIANG Haiming. Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0470

Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation

doi: 10.11883/bzycj-2024-0470
  • Received Date: 2024-12-02
  • Rev Recd Date: 2025-09-08
  • Available Online: 2025-09-17
  • In physics, a “source” denotes the origin of matter or energy, while a “sink” refers to the terminal point of matter or energy. By analogizing with the energy source problem in underground explosions, this study proposes an energy sink problem for ideal fluid cavity annihilation. A detailed analysis is conducted on the energy balance and adjustment mechanisms in the ideal fluid cavity annihilation problem, establishing the relationships among fluid pressure work, energy convergence, transmission and transformation. A characteristic energy factor is introduced to describe the “centripetal convergence” behavior of energy sinks. The characteristic energy factor for energy sinks incorporates the information on converged energy, geometric dimensions of cavities and physical properties of fluids, effectively characterizing the “convergence” behavior of energy sink problems and laying a theoretical foundation for the subsequent research on “energy sink” problems in solids. The physical mechanisms and mathematical foundations of the characteristic energy factor are analyzed, and its characteristics and advantages are expounded. Specifically, the introduction of the characteristic energy factor circumvents the need for complex stress-strain relationships, boundary conditions, and unknown internal material structures in traditional continuum mechanics, significantly simplifying the complexity of the problem. The characteristic energy factor is primarily applicable to the predictions of engineering disasters with large scales or well-defined failure zones (e.g., underground explosions, large-scale surrounding rock deformation, zonal disintegration or pendulum waves, and shear-slip rock bursts in ore pillars), whereas its applicability to highly localized engineering disasters with unknown failure zones (e.g., strain-type rock bursts) requires further investigation.
  • loading
  • [1]
    KRAMARENKO V I, REVUZHENKO A F. Flow of energy in a deformed medium [J]. Soviet Mining, 1988, 24(6): 536–540. DOI: 10.1007/BF02498611.
    [2]
    REVUZHENKO A F, KLISHIN S V. Energy flux lines in a deformable rock mass with elliptical openings [J]. Journal of Mining Science, 2009, 45(3): 201–206. DOI: 10.1007/s10913-009-0026-5.
    [3]
    钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010: 127–134.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010: 127–134.
    [4]
    ADUSHKIN V V, SPIVAK A. Underground explosions [M]. Lexington, MA: Weston Geophysical Corp, 2015: 431–480.
    [5]
    SADOVSKY M A, VOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process [M]. Moscow: Science Press, 1987: 40–240.
    [6]
    KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. Part II [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750.
    [7]
    王明洋, 李杰, 李凯锐. 深部岩体非线性力学能量作用原理与应用 [J]. 岩石力学与工程学报, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.

    WANG M Y, LI J, LI K R. A nonlinear mechanical energy theory in deep rock mass engineering and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.
    [8]
    SHISHKIN N I. Seismic efficiency of a contact explosion and a high-velocity impact [J]. Journal of Applied Mechanics and Technical Physics, 2007, 48(2): 145–152. DOI: 10.1007/S10808-007-0019-6.
    [9]
    HASKELL N A. Analytic approximation for the elastic radiation from a contained underground explosion [J]. Journal of Geophysical Research, 1967, 72(10): 2583–2587. DOI: 10.1029/JZ072i010p02583.
    [10]
    SHISHKIN N I. On the problem of the disintegration of rock by an explosion under the influence of a free surface [J]. Journal of Applied Mechanics and Technical Physics, 1981, 22(3): 401–408. DOI: 10.1007/bf00907569.
    [11]
    钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [12]
    蒋海明. 深部岩体动力特征响应的理论与实验研究 [D]. 南京: 陆军工程大学, 2018: 28–29.
    [13]
    王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [14]
    倪汉根, 刘亚坤. 水工建筑物的空化与空蚀 [M]. 大连: 大连理工大学出版社, 2011: 1–3.

    NI H G, LIU Y K. Cavitation and cavitation damage of Hydraulic structures [M]. Dalian: Dalian University of Technology Press, 2011: 1–3.
    [15]
    杨桂通. 弹性力学 [M]. 北京: 高等教育出版社, 2003: 60–64.
    [16]
    王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.

    WANG M Y, CHEN H X, LI J, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.
    [17]
    徐天涵, 李杰, 王明洋, 等. 地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算 [J]. 爆炸与冲击, 2019, 39(12): 121101. DOI: 10.11883/bzycj-2018-0505.

    XU T H, LI J, WANG M Y, et al. Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range [J]. Explosion and Shock Waves, 2019, 39(12): 121101. DOI: 10.11883/bzycj-2018-0505.
    [18]
    陈昊祥, 王明洋, 李杰. 深部岩体变形破坏的特征能量因子与应用 [J]. 爆炸与冲击, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.

    CHEN H X, WANG M Y, LI J. A characteristic energy factor for deformation and failure of deep rock masses and its application [J]. Explosion and Shock Waves, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.
    [19]
    李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅱ): 冲击扰动诱发岩块滑移的物理模拟试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.
    [20]
    蒋海明, 李杰, 王明洋. 块系岩体滑移失稳中低摩擦效应的理论与试验研究 [J]. 岩土力学, 2019, 40(4): 1405–1412. DOI: 10.16285/j.rsm.2017.2223.

    JIANG H M, LI J, WANG M Y. Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405–1412. DOI: 10.16285/j.rsm.2017.2223.
    [21]
    陈昊祥. 特征能量因子及其在工程灾变中的应用 [D]. 南京: 陆军工程大学, 2019: 147–154.
    [22]
    朗道 Л Д, 栗弗席兹 E М. 流体动力学 [M]. 李植, 译. 5版. 北京: 高等教育出版社, 2012: 3–6.
    [23]
    STRUTT J W. On the pressure developed in a liquid during the collapse of a spherical cavity [M]//STRUTT J W. Scientific Papers. Cambridge: Cambridge University Press, 1920: 504–507. DOI: 10.1017/CBO9780511704017.076.
    [24]
    陈昊祥, 王明洋, 戚承志, 等. 深部圆形巷道围岩能量的调整机制及平衡关系 [J]. 岩土工程学报, 2020, 42(10): 1849–1857. DOI: 10.11779/CJGE202010010.

    CHEN H X, WANG M Y, QI C Z, et al. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849–1857. DOI: 10.11779/CJGE202010010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (181) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return