| Citation: | PENG Jiangzhou, PAN Liujuan, GAO Guangfa, WANG Zhiqiao, HU Jie, WU Weitao, WANG Mingyang, HE Yong. A digital intelligence simulation model for explosion power field and urban building damage effect and its application[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0471 |
| [1] |
殷文骏, 程帅, 刘文祥, 等. 远场爆炸冲击波作用下高层建筑上部结构动态响应试验研究 [J]. 兵工学报, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.
YIN W J, CHENG S, LIU W X, et al. Experimental study on dynamic response of upper structure of high-rise building under far-field explosion shock wave loading [J]. Acta Armamentarii, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.
|
| [2] |
王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
|
| [3] |
童晓. 爆炸场冲击波压力测量及数据处理方法研究 [D]. 南京: 南京理工大学, 2015.
TONG X. Research on shock wave pressure measurement and data processing method in explosion field [D]. Nanjing: Nanjing University of Science and Technology, 2015.
|
| [4] |
都浩, 李忠献, 郝洪. 建筑物外部爆炸超压荷载的数值模拟 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 413–418. DOI: 10.3969/j.issn.1009-3443.2007.05.002.
DU H, LI Z X, HAO H. Numerical simulation on blast overpressure loading outside buildings [J]. Journal of PLA University of Science and Technology, 2007, 8(5): 413–418. DOI: 10.3969/j.issn.1009-3443.2007.05.002.
|
| [5] |
李忠献, 师燕超, 周浩璋, 等. 城市复杂环境中爆炸波的传播规律与超压荷载 [J]. 工程力学, 2009, 26(6): 178–183.
LI Z X, SHI Y C, ZHOU H Z, et al. Propagation law and overpressure load of blast wave in urban complex environment [J]. Engineering Mechanics, 2009, 26(6): 178–183.
|
| [6] |
王栋. 拱形地下结构抗爆性能试验研究 [D]. 北京: 清华大学, 2022. DOI: 10.27266/d.cnki.gqhau.2022.000098.
WANG D. Experimental study on anti-explosion performance of arched underground structure [D]. Beijing: Tsinghua University, 2022. DOI: 10.27266/d.cnki.gqhau.2022.000098.
|
| [7] |
ZHOU X S, ZHANG X M, REN T H, et al. Waveform characteristics of tunnel blast waves and a wave-blocking method [J]. Shock and Vibration, 2022, 2022: 3013130. DOI: 10.1155/2022/3013130.
|
| [8] |
KRÁLIK E J, BARAN M. Numerical analysis of the exterior explosion effects on the buildings with barriers [J]. Applied Mechanics and Materials, 2013, 390: 230–234. DOI: 10.4028/www.scientific.net/AMM.390.230.
|
| [9] |
ZHANG M T, PEI Y, YAO X, et al. Damage assessment of aircraft wing subjected to blast wave with finite element method and artificial neural network tool [J]. Defence Technology, 2023, 25: 203–219. DOI: 10.1016/j.dt.2022.05.010.
|
| [10] |
严国建, 周明安, 余轮, 等. 空气中爆炸冲击波超压峰值的预测 [J]. 采矿技术, 2011, 11(5): 89–90,112. DOI: 10.3969/j.issn.1671-2900.2011.05.035.
YAN G J, ZHOU M A, YU L, et al. Prediction of peak overpressure of explosion shock wave in air [J]. Mining Technology, 2011, 11(5): 89–90,112. DOI: 10.3969/j.issn.1671-2900.2011.05.035.
|
| [11] |
ZHANG K, ZHANG K, BAO R. Prediction of gas explosion pressures: a machine learning algorithm based on KPCA and an optimized LSSVM [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105082. DOI: 10.1016/j.jlp.2023.105082.
|
| [12] |
潘美霖, 彭卫文, 冷春江, 等. 基于贝叶斯深度学习的复杂结构爆炸载荷的快速估计 [J/OL]. 爆炸与冲击, [2024-12-02]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0191. DOI: 10.11883/bzycj-2024-0191.
PAN M L, PENG W W, LENG C J, et al. Fast estimation of blast loading in complex structures based on Bayesian deep learning [J/OL]. Explosion and Shock Waves, [2024-12-02]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0191. DOI: 10.11883/bzycj-2024-0191.
|
| [13] |
陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展 [J]. 力学学报, 2022, 54(9): 2343–2360. DOI: 10.6052/0459-1879-22-130.
CHEN H, GUO M M, TIAN Y, et al. Progress of convolution neural networks in flow field reconstruction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343–2360. DOI: 10.6052/0459-1879-22-130.
|
| [14] |
WANG Z Q, HUA Y, AUBRY N, et al. Fast optimization of multichip modules using deep learning coupled with Bayesian method [J]. International Communications in Heat and Mass Transfer, 2023, 141: 106592. DOI: 10.1016/j.icheatmasstransfer.2022.106592.
|
| [15] |
HUA Y, WANG Z Q, YUAN X Y, et al. Estimation of steady-state temperature field in Multichip Modules using deep convolutional neural network [J]. Thermal Science and Engineering Progress, 2023, 40: 101755. DOI: 10.1016/j.tsep.2023.101755.
|
| [16] |
闫盼盼, 牛青林, 高文强, 等. 基于卷积神经网络的地面尾喷焰流场预测 [J]. 力学学报, 2024, 56(4): 980–990. DOI: 10.6052/0459-1879-23-412.
YAN P P, NIU Q L, GAO W Q, et al. Prediction of ground rocket exhaust plume flow field based on convolutional neural network [J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 980–990. DOI: 10.6052/0459-1879-23-412.
|
| [17] |
吴昊恺, 陈耀然, 周岱, 等. 基于CNN与GAN深度学习模型近壁面湍流场超分辨率重构的精细化研究 [J]. 力学学报, 2024, 56(8): 2231–2242. DOI: 10.6052/0459-1879-24-019.
WU H K, CHEN Y R, ZHOU D, et al. Refined study of super-resolution reconstruction of near-wall turbulence field based on CNN and GAN deep learning model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2231–2242. DOI: 10.6052/0459-1879-24-019.
|
| [18] |
PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning mesh-based simulation with graph networks [C]//International Conference on Learning Representations. Vienna: OpenReview. net, 2021. DOI: 10.48550/arXiv.2010.03409.
|
| [19] |
KANG M A, PARK C H. Prediction of peak pressure by blast wave propagation between buildings using a conditional 3D convolutional neural network [J]. IEEE Access, 2023, 11: 26114–26124. DOI: 10.1109/ACCESS.2023.3257345.
|
| [20] |
PENG J Z, AUBRY N, LI Y B, et al. Physics-informed graph convolutional neural network for modeling geometry-adaptive steady-state natural convection [J]. International Journal of Heat and Mass Transfer, 2023, 216: 124593. DOI: 10.1016/j.ijheatmasstransfer.2023.124593.
|
| [21] |
SHAO X Q, LIU Z J, ZHANG S Q, et al. PIGNN-CFD: a physics-informed graph neural network for rapid predicting urban wind field defined on unstructured mesh [J]. Building and Environment, 2023, 232: 110056. DOI: 10.1016/j.buildenv.2023.110056.
|
| [22] |
郝祎琛, 谢心喻, 丁家琦, 等. 瞬态多相流场图神经网络时空预测方法研究 [J]. 哈尔滨工程大学学报, 2024, 45(9): 1761–1769. DOI: 10.11990/jheu.202207004.
HAO Y C, XIE X Y, DING J Q, et al. Spatiotemporal prediction method for the transient multiphase flow field via graph neural network [J]. Journal of Harbin Engineering University, 2024, 45(9): 1761–1769. DOI: 10.11990/jheu.202207004.
|
| [23] |
LI Q L, WANG Y, CHEN W S, et al. Machine learning prediction of BLEVE loading with graph neural networks [J]. Reliability Engineering & System Safety, 2024, 241: 109639. DOI: 10.1016/j.ress.2023.109639.
|
| [24] |
CULLIS I G, NIKIFORAKIS N, FRANKL P, et al. Simulating geometrically complex blast scenarios [J]. Defence Technology, 2016, 12(2): 134–146. DOI: 10.1016/j.dt.2016.01.005.
|
| [25] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: JMLR. org, 2015: 448–456. DOI: 10.48550/arXiv.1502.03167.
|
| [26] |
LI T Y, ZOU S F, CHANG X H, et al. Predicting unsteady incompressible fluid dynamics with finite volume informed neural network [J]. Physics of Fluids, 2024, 36(4): 043601. DOI: 10.1063/5.0197425.
|
| [27] |
FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric [EB/OL]. arXiv: 1903.02428, 2019. [2024-12-02]. https://arxiv.org/abs/1903.02428. DOI: 10.48550/arXiv.1903.02428.
|
| [28] |
CHANG D T. Tiered graph autoencoders with PyTorch geometric for molecular graphs [EB/OL]. arXiv: 1908.08612, 2019. [2024-12-02]. https://arxiv.org/abs/1908.08612. DOI: 10.48550/arXiv.1908.08612.
|
| [29] |
LI S, ZHAO Y L, VARMA R, et al. PyTorch distributed: experiences on accelerating data parallel training [J]. Proceedings of the VLDB Endowment, 2020, 13(12): 3005–3018. DOI: 10.14778/3415478.3415530.
|
| [30] |
姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
|
| [31] |
FEJES P, HORKAI A. Creating city models in ArchiCAD software environment [J]. The International Journal of Engineering and Science, 2021, 10(1): 11–17. DOI: 10.9790/1813-1001011117.
|
| [32] |
阎石, 刘蕾, 齐宝欣, 等. 爆炸荷载作用下方钢管混凝土柱的动力响应及破坏机理 [J]. 防灾减灾工程学报, 2011, 31(5): 477–482. DOI: 10.3969/j.issn.1672-2132.2011.05.002.
YAN S, LIU L, QI B X, et al. Dynamic response and failure mode analysis of concrete infilled rectangular steel tube columns under blasting loading [J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5): 477–482. DOI: 10.3969/j.issn.1672-2132.2011.05.002.
|
| [33] |
焦燏烽, 赵果, 侯延利. 框架柱在爆炸冲击荷载作用下动力系数及破坏模式研究 [J]. 建筑科学, 2015, 31(9): 32–37. DOI: 10.13614/j.cnki.11-1962/tu.2015.09.006.
JIAO Y F, ZHAO G, HOU Y L. Dynamic factor and failure modes research of the frame column under blast pressure [J]. Building Science, 2015, 31(9): 32–37. DOI: 10.13614/j.cnki.11-1962/tu.2015.09.006.
|
| [34] |
PRUGH R W. The effects of explosive blast on structures and personnel [J]. Process Safety Progress, 1999, 18(1): 5–16. DOI: 10.1002/prs.680180104.
|