• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
HUANG Rong, ZHANG Xinyue, HUI Xulong, BAI Chunyu, LIU Xiaochuan, MU Rang-ke, LI Gang, LI Kui. High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0477
Citation: HUANG Rong, ZHANG Xinyue, HUI Xulong, BAI Chunyu, LIU Xiaochuan, MU Rang-ke, LI Gang, LI Kui. High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0477

High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy

doi: 10.11883/bzycj-2024-0477
  • Received Date: 2024-12-04
  • Rev Recd Date: 2025-03-24
  • Available Online: 2025-03-26
  • K447A, a nickel-based superalloy, is widely used in critical hot-end components of aerospace engines due to its excellent high-temperature performance. Through quasi - static and high strain rate compression experiments within the temperature range of 25 ℃ to 1000 ℃, the dynamic mechanical properties of K447A superalloy were systematically investigated. The effects of temperature and strain rate on its plastic flow behavior and material microstructure were analyzed. By examining the stress-strain curves under quasi-static conditions and utilizing electron backscatter diffraction (EBSD), the microstructural characteristics of specimens deformed at various strain rates and temperatures were analyzed. The results reveal that during the plastic deformation of K447A, strain hardening, temperature softening, and strain rate strengthening phenomena coexist. As the strain rate increases from quasi-static levels to 5000 s−1, the temperature sensitivity index (s) gradually decreases, indicating a diminishing temperature softening effect at higher strain rates. Notably, at an elevated strain rate of 800 ℃, an anomalous stress peak appears in the flow stress-strain curve of the K447A alloy, suggesting complex interactions between temperature and strain rate during deformation. Furthermore, the strain rate sensitivity coefficient (p) increases with temperature, highlighting a more pronounced strain rate strengthening effect at elevated temperatures. Microstructural changes within the material, which are influenced by the coupling of strain rate and temperature, are also examined. An increase in strain rate leads to grain refinement, while higher temperatures result in a decrease in the proportion of low-angle grain boundaries, facilitating dynamic recrystallization within the material. To accurately describe the flow stress influenced by the interplay of temperature and strain rate, a modified Johnson-Cook (J-C) constitutive model was developed. This revised model demonstrates improved predictive capability compared to the original formulation, effectively capturing the plastic flow behavior of K447A across a broad range of temperatures and strain rates. The predictive error is significantly reduced from 26.36% to 9.05%, underscoring the model's enhanced accuracy and reliability in simulating the mechanical performance of K447A alloy under varying operational conditions.
  • loading
  • [1]
    刘阳, 叶洪涛, 张军, 等. 航空用镍基高温合金切削现状研究 [J]. 航空制造技术, 2011, 54(14): 48–51. DOI: 10.16080/j.issn1671-833x.2011.14.014.

    LIU Y, YE H T, ZHANG J, et al. Research on cutting status of Ni-based superalloy in aviation industry [J]. Aeronautical Manufacturing Technology, 2011, 54(14): 48–51. DOI: 10.16080/j.issn1671-833x.2011.14.014.
    [2]
    YANG G X, XU Y F, JIANG L, et al. High temperature tensile properties and fracture behavior of cast nickel-base K445 superalloy [J]. Progress in Natural Science: Materials International, 2011, 21(5): 418–425. DOI: 10.1016/S1002-0071(12)60078-1.
    [3]
    CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high–temperature properties [J]. Journal of Alloys and Compounds, 2018, 760: 15–30. DOI: 10.1016/j.jallcom.2018.05.067.
    [4]
    EYLON D, FUJISHIRO S, POSTANS P J, et al. High-temperature titanium alloys—a review [J]. JOM, 1984, 36(11): 55–62. DOI: 10.1007/BF03338617.
    [5]
    李鹏, 叶雷, 程耀永, 等. K447A镍基高温合金钎焊接头组织及性能 [J]. 焊接, 2016(3): 11–13. DOI: 10.3969/j.issn.1001-1382.2016.03.003.

    LI P, YE L, CHENG Y Y, et al. Microstructures and mechanical properties of K447A nickel-base superalloy brazed joint [J]. Welding & Joining, 2016(3): 11–13. DOI: 10.3969/j.issn.1001-1382.2016.03.003.
    [6]
    Pan C L, Yao Z H, Ma Y W, et al. Solidification microstructure characteristics and their formation mechanism of K447A nickel-based superalloy for dual-performance blisk [J]. Materials Characterization, 2023, 203: 113155. DOI: 10.1016/j.matchar.2023.113155.
    [7]
    Zhang Z L, Zhao Y, Shan J G, et al. Influence of heat treatment on microstructures and mechanical properties of K447A cladding layers obtained by laser solid forming [J]. Journal of Alloys and Compounds, 2019, 790: 703–715. DOI: 10.1016/j.jallcom.2019.03.136.
    [8]
    Zhang Z L, Zhao Y, Shan J G, et al. The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure [J]. Materials Science and Engineering: A, 2021, 823: 141678. DOI: 10.1016/j.msea.2021.141678.
    [9]
    谷怀鹏, 李相辉, 盖其东, 等. K447A合金的热处理组织和拉伸性能研究 [J]. 铸造, 2014, 63(8): 824–827. DOI: 10.3969/j.issn.1001-4977.2014.08.013.

    GU H P, LI X H, GAI Q D, et al. Study on the heat-treated microstructure and tensile property of K447A alloy [J]. Foundry, 2014, 63(8): 824–827. DOI: 10.3969/j.issn.1001-4977.2014.08.013.
    [10]
    WANG J J, WANG Z C, HAN Z W, et al. Effect of rejuvenation heat treatment on the microstructure and stress relaxation behavior of nickel-based superalloy with excess hardness [J]. Materials Characterization, 2023, 204: 113189. DOI: 10.1016/j.matchar.2023.113189.
    [11]
    焦明木, 宋健民. 一种铸造镍基高温合金显微组织与力学性能研究 [J]. 铸造, 2024, 73(5): 621–625. DOI: 10.3969/j.issn.1001-4977.2024.05.005.

    JIAO M M, SONG J M. Research on microstructure and mechanical properties of casting nickel base superalloy [J]. Foundry, 2024, 73(5): 621–625. DOI: 10.3969/j.issn.1001-4977.2024.05.005.
    [12]
    Korkmaz M E, Günay M, Verleysen P. Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy [J]. Journal of Alloys and Compounds, 2019, 801: 542–549. DOI: 10.1016/j.jallcom.2019.06.153.
    [13]
    Liu J, Zheng B L, Zhang K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
    [14]
    Wang J J, Hu X Y, Yuan K B, et al. Impact resistance prediction of superalloy honeycomb using modified Johnson–Cook constitutive model and fracture criterion [J]. International Journal of Impact Engineering, 2019, 131: 66–77. DOI: 10.1016/j.ijimpeng.2019.05.001.
    [15]
    Ugodilinwa N E, Khoshdarregi M, Ojo O A. Analysis and constitutive modeling of high strain rate deformation behavior of Haynes 282 aerospace superalloy [J]. Materials Today Communications, 2019, 20: 100545. DOI: 10.1016/j.mtcomm.2019.100545.
    [16]
    陈杰, 杨庆祥, 翟若岱. GH4720Li镍基高温合金高应变率动态力学性能研究 [J]. 信息记录材料, 2020, 21(10): 14–16. DOI: 10.16009/j.cnki.cn13-1295/tq.2020.10.007.

    CHEN J, YANG Q X, ZHAI R D. Study of high strain rate dynamic mechanical properties of GH4720Li nickel-based high temperature alloy [J]. Information Recording Materials, 2020, 21(10): 14–16. DOI: 10.16009/j.cnki.cn13-1295/tq.2020.10.007.
    [17]
    KUHN H, MEDLIN D. ASM Handbook Volume 8: Mechanical testing and evaluation [M]. Materials Park, OH: ASM International, 2000: 462-476. DOI: 10.31399/asm.hb.v08.9781627081764.
    [18]
    WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. DOI: 10.1016/j.ijplas.2014.08.017.
    [19]
    SONG Y, GARCIA-GONZALEZ D, RUSINEK A. Constitutive models for dynamic strain aging in metals: Strain rate and temperature dependences on the flow stress [J]. Materials, 2020, 13(7): 1794. DOI: 10.3390/ma13071794.
    [20]
    Kumar N, YING Q, NIE X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials & Design, 2015, 86: 598–602. DOI: 10.1016/j.matdes.2015.07.161.
    [21]
    LEYENS C, PETERS M. Titanium and titanium alloys: Fundamentals and applications [M]. Weinheim: Wiley-VCH, 2003. DOI: 10.1002/3527602119.
    [22]
    Ma H J, Huang L, Tian Y, et al. Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy [J]. Materials Science and Engineering: A, 2014, 606: 233–239. DOI: 10.1016/j.msea.2014.03.081.
    [23]
    Khan A S, Meredith C S. Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP) [J]. International Journal of Plasticity, 2010, 26(2): 189–203. DOI: 10.1016/j.ijplas.2009.07.002.
    [24]
    王忠堂, 张士宏, 冯斌. TC11钛合金应变速率和温度敏感系数 [J]. 沈阳理工大学学报, 2009, 28(3): 5–8. DOI: 10.3969/j.issn.1003-1251.2009.03.002.

    WANG Z T, ZHANG S H, FENG B. Strain-rate and temperature sensitivity coefficient for TC11 titanium alloy [J]. Journal of Shenyang Ligong University, 2009, 28(3): 5–8. DOI: 10.3969/j.issn.1003-1251.2009.03.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (95) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return