Citation: | XUE Jianfeng, ZHAO Xufeng, PI Aiguo, XU Honghao, YUAN Liming, WAN Siqi. Study on the damage effect of core-shell composite reactive fragments on spaced targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0483 |
[1] |
李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.
LI X D, DU Z H. Target Vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013.
|
[2] |
叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
|
[3] |
WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US 2011/0239888 A1 [P]. 2011-10-18.
|
[4] |
沈波, 李延. 全含能侵彻战斗部对多层钢介质的毁伤威力表征技术 [J]. 含能材料, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.
SHEN B, LI Y. Characterization technology of damage power of all-energetic penetrating warhead to multilayer steel medium [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.
|
[5] |
王靖岩, 王义智, 韩志伟. 铝-氟聚物反应性物质制备及研究进展 [J]. 含能材料, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.
WANG J Y, WANG Y Z, HAN Z W. Preparation and research progress of aluminum-fluoropolymer reactive materials [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.
|
[6] |
黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.
HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Chinese Journal of Energetic Materials, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.
|
[7] |
郑雄伟, 袁宝慧, 陈进, 等. Al-PTFE 活性材料的冲击压力对冲击释能规律影响研究 [J]. 兵器材料科学与工程, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.
ZHENG X W, YUAN B H, CHEN J, et al. Effect of shock pressure on energy releasing characteristic of Al-PTFE reactive materials [J]. Ordnance Material Science and Engineering, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.
|
[8] |
肖艳文, 徐峰悦, 余庆波, 等. 高密度活性破片碰撞双层靶毁伤效应 [J]. 科技导报, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.
XIAO Y W, XU F Y, YU Q B, et al. Damage of double-spaced plates by reactive material fragment impact [J]. Science & Technology Review, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.
|
[9] |
WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.01.
|
[10] |
彭军, 李彪彪, 袁宝慧, 等. 钢包覆式活性破片侵彻双层铝靶的行为特性研究 [J]. 火炸药学报, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.
PENG J, LI B B, YUAN B H, et al. Research on behavior of steel-coated reactive materials fragment on penetrating double-layer aluminum plates [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.
|
[11] |
YUAN Y, LIU Z Y, HE S, et al. Shock-induced reaction behaviors of functionally graded reactive material [J]. Defence Technology, 2021, 17(5): 1687–1698. DOI: 10.1016/j.dt.2020.09.010.
|
[12] |
ZHANG H, WANG H F, YU Q B, et al. Perforation of double-spaced aluminum plates by reactive projectiles with different densities [J]. Materials, 2021, 14(5): 1229. DOI: 10.3390/ma14051229.
|
[13] |
王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应 [J]. 兵工学报, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.
WANG Z C, XU Y, JIANG C L, et al. Damage effect of W/Zr/Ti reactive fragments on spaced targets [J]. Acta Armamentarii, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.
|
[14] |
曹进, 陈春林, 马坤, 等. 球形含能结构材料弹体超高速撞击多层薄钢靶的毁伤特性 [J]. 含能材料, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.
CAO J, CHEN C L, MA K, et al. Investigation on damage characteristics of multilayer thin steel target penetrated by hypervelocity spherical reactive materials projectile [J]. Chinese Journal of Energetic Materials, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.
|
[15] |
任鑫鑫, 李裕春, 吴家祥, 等. 碳纤维对PTFE/Al 反应材料动态力学行为和点火特性影响研究 [J]. 北京理工大学学报, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.
REN X X, LI Y C, WU J X, et al. Effect of carbon fiber on dynamic mechanical behavior and ignition characteristics of PTFE/Al reactive materials [J]. Transactions of Beijing institute of Technology, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.
|
[16] |
丁亮亮. PELE 弹活性内芯配方与弹体结构设计及毁伤机理研究 [D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.
DING L L. Research on the reactive inner core formulation and structural design as well as damage mechanism of PELE projectile [D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.
|
[17] |
SI S P, HE C, LIU S, et al. Influence of impact velocity on impact-initiated reaction behavior of Zr-Ti-Nb alloy [J]. Materials & Design, 2022, 220: 110846. DOI: 10.1016/j.matdes.2022.110846.
|