• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
XUE Jianfeng, ZHAO Xufeng, PI Aiguo, XU Honghao, YUAN Liming, WAN Siqi. Study on the damage effect of core-shell composite reactive fragments on spaced targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0483
Citation: XUE Jianfeng, ZHAO Xufeng, PI Aiguo, XU Honghao, YUAN Liming, WAN Siqi. Study on the damage effect of core-shell composite reactive fragments on spaced targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0483

Study on the damage effect of core-shell composite reactive fragments on spaced targets

doi: 10.11883/bzycj-2024-0483
  • Received Date: 2024-12-11
  • Rev Recd Date: 2025-04-28
  • Available Online: 2025-04-29
  • To enhance the damage efficiency of fluoropolymer-based reactive fragments and broaden their application range, a novel core-shell composite structure active fragment has been proposed. To improve the strength of the matrix material, carbon fiber was introduced via a wet mixing method. Under specific sintering conditions, two types of samples were prepared: PTFE/Al/CF tungsten powder and PTFE/Al/CF tungsten ball. The basic mechanical properties of these samples were tested. The addition of tungsten powder was found to increase the dynamic compressive strength of the composite. Penetration tests were conducted on 3 mm+3 mm+2 mm+2 mm multi-layer interval aluminum targets using both types of fragments. The experimental data were automatically processed using a Python-based program, yielding the perforation area, deformation volume, and reaction light intensity for each layer of the target plate. The damage characteristics of the multi-interval target under different velocity and constraint conditions were compared and analyzed. The results show that the core-shell type fragment exhibits superior penetration ability. It can penetrate all four layers of the target plates at low speeds, although the perforation area is relatively small, with a perforation diameter approximately 0.95 times the fragment diameter. In contrast, the homogeneous fragment has a larger perforation area but weaker penetration ability. Its perforation diameter is about 1.21 times the fragment diameter, and it can only penetrate three layers of target plates at high speeds. The steel shell constraint significantly enhances the punching and penetration capabilities of the fragments. The primary active reaction of the fragment occurs during impact with the second layer of the target. The energy release reaction has a limited effect on improving the punching effect. The differences in damage characteristics are mainly attributed to the mechanical properties of the fragments. These findings provide valuable insights for the structural design and damage effect evaluation of reactive fragments.
  • loading
  • [1]
    李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.

    LI X D, DU Z H. Target Vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013.
    [2]
    叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.

    YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
    [3]
    WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US 2011/0239888 A1 [P]. 2011-10-18.
    [4]
    沈波, 李延. 全含能侵彻战斗部对多层钢介质的毁伤威力表征技术 [J]. 含能材料, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.

    SHEN B, LI Y. Characterization technology of damage power of all-energetic penetrating warhead to multilayer steel medium [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.
    [5]
    王靖岩, 王义智, 韩志伟. 铝-氟聚物反应性物质制备及研究进展 [J]. 含能材料, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.

    WANG J Y, WANG Y Z, HAN Z W. Preparation and research progress of aluminum-fluoropolymer reactive materials [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.
    [6]
    黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.

    HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Chinese Journal of Energetic Materials, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.
    [7]
    郑雄伟, 袁宝慧, 陈进, 等. Al-PTFE 活性材料的冲击压力对冲击释能规律影响研究 [J]. 兵器材料科学与工程, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.

    ZHENG X W, YUAN B H, CHEN J, et al. Effect of shock pressure on energy releasing characteristic of Al-PTFE reactive materials [J]. Ordnance Material Science and Engineering, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.
    [8]
    肖艳文, 徐峰悦, 余庆波, 等. 高密度活性破片碰撞双层靶毁伤效应 [J]. 科技导报, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.

    XIAO Y W, XU F Y, YU Q B, et al. Damage of double-spaced plates by reactive material fragment impact [J]. Science & Technology Review, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.
    [9]
    WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.01.
    [10]
    彭军, 李彪彪, 袁宝慧, 等. 钢包覆式活性破片侵彻双层铝靶的行为特性研究 [J]. 火炸药学报, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.

    PENG J, LI B B, YUAN B H, et al. Research on behavior of steel-coated reactive materials fragment on penetrating double-layer aluminum plates [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.
    [11]
    YUAN Y, LIU Z Y, HE S, et al. Shock-induced reaction behaviors of functionally graded reactive material [J]. Defence Technology, 2021, 17(5): 1687–1698. DOI: 10.1016/j.dt.2020.09.010.
    [12]
    ZHANG H, WANG H F, YU Q B, et al. Perforation of double-spaced aluminum plates by reactive projectiles with different densities [J]. Materials, 2021, 14(5): 1229. DOI: 10.3390/ma14051229.
    [13]
    王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应 [J]. 兵工学报, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.

    WANG Z C, XU Y, JIANG C L, et al. Damage effect of W/Zr/Ti reactive fragments on spaced targets [J]. Acta Armamentarii, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.
    [14]
    曹进, 陈春林, 马坤, 等. 球形含能结构材料弹体超高速撞击多层薄钢靶的毁伤特性 [J]. 含能材料, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.

    CAO J, CHEN C L, MA K, et al. Investigation on damage characteristics of multilayer thin steel target penetrated by hypervelocity spherical reactive materials projectile [J]. Chinese Journal of Energetic Materials, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.
    [15]
    任鑫鑫, 李裕春, 吴家祥, 等. 碳纤维对PTFE/Al 反应材料动态力学行为和点火特性影响研究 [J]. 北京理工大学学报, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.

    REN X X, LI Y C, WU J X, et al. Effect of carbon fiber on dynamic mechanical behavior and ignition characteristics of PTFE/Al reactive materials [J]. Transactions of Beijing institute of Technology, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.
    [16]
    丁亮亮. PELE 弹活性内芯配方与弹体结构设计及毁伤机理研究 [D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.

    DING L L. Research on the reactive inner core formulation and structural design as well as damage mechanism of PELE projectile [D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.
    [17]
    SI S P, HE C, LIU S, et al. Influence of impact velocity on impact-initiated reaction behavior of Zr-Ti-Nb alloy [J]. Materials & Design, 2022, 220: 110846. DOI: 10.1016/j.matdes.2022.110846.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views (129) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return