Citation: | LIU Zhenhua, KONG Xiangzhen, HONG Jian, FANG Qin. Numerical investigation on dynamic tensile fracture in concrete material by non-ordinary state-based peridynamics[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0485 |
[1] |
方秦, 陈小伟. 冲击爆炸效应与工程防护专辑·编者按 [J]. 中国科学: 物理学力学天文学, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
FANG Q, CHEN X W. Special issue on impact and explosion effect and engineering protection [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
|
[2] |
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
|
[3] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
|
[4] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[5] |
KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain-rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j. ijimpeng.2019.103445. DOI: 10.1016/j.ijimpeng.2019.103445.
|
[6] |
KHOE Y S, WEERHEIJM J. Limitations of smeared crack models for dynamic analysis of concrete [C]//The 12th International LS-DYNA Users Conference. Constitutive Models, 2012.
|
[7] |
KONG X Z, FANG Q, HONG J. A new damage-based nonlocal model for dynamic tensile failure of concrete material [J]. International Journal of Impact Engineering, 2019, 132: 103336. DOI: 10.1016/j.ijimpeng.2019.103336.
|
[8] |
XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading [J]. Computers & Structures, 2006, 84(5/6): 431–438. DOI: 10.1016/j.compstruc.2005.09.029.
|
[9] |
LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
|
[10] |
孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 25–33. DOI: 10.1360/SSPMA-2019-0186.
KONG X Z, FANG Q. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the smooth particle hydrodynamics method [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 25–33. DOI: 10.1360/SSPMA-2019-0186.
|
[11] |
YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
|
[12] |
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0.
|
[13] |
SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
|
[14] |
LIU X, KONG X Z, FANG Q, et al. Peridynamics modelling of projectile penetration into concrete targets [J]. International Journal of Impact Engineering, 2025, 195: 105110. DOI: 10.1016/j.ijimpeng.2024.105110.
|
[15] |
LITTLEWOOD D J. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact [C]//ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2010, 44465: 209–217.
|
[16] |
BREITENFELD M S, GEUBELLE P H, WECKNER O, et al. Non-ordinary state-based peridynamic analysis of stationary crack problems [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 233–250. DOI: 10.1016/j.cma.2014.01.002.
|
[17] |
GU X, ZHANG Q, YU Y T. An effective way to control numerical instability of a nonordinary state-based peridynamic elastic model [J]. Mathematical Problems in Engineering Theory Methods and Applications, 2017(1): 1750876. DOI: 10.1155/2017/1750876.
|
[18] |
YAGHOOBI A, CHORZEPA M G. Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics [J]. Computers & Structures, 2017, 188: 63–79. DOI: 10.1016/j.compstruc.2017.03.019.
|
[19] |
CHEN H L. Bond-associated deformation gradients for peridynamic correspondence model [J]. Mechanics Research Communications, 2018, 90: 34–41. DOI: 10.1016/j.mechrescom.2018.04.004.
|
[20] |
GU X, ZHANG Q, MADENCI E, et al. Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112592. DOI: 10.1016/j.cma.2019.112592.
|
[21] |
ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates [J]. Materials and Structures, 1991, 24: 422–424. DOI: 10.1007/BF02472015.
|
[22] |
REINHARDT H W, WEERHEIJM J. Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects [J]. International Journal of Fracture, 1991, 51(1): 31–42. DOI: 10.1007/BF00020851.
|
[23] |
CURBACH M, EIBL J. Crack velocity in concrete [J]. Engineering Fracture Mechanics, 1990, 35(1/3): 321–326. DOI: 10.1016/0013-7944(90)90210-8.
|
[24] |
LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
|
[25] |
ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part I: experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
|
[26] |
LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part II: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
|
[27] |
LU Y B. , LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171–180. DOI: 10.1016/j.ijimpeng.2010.10.028.
|
[28] |
SCHMINDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic modeling [M]. University of Florida, 2003.
|
[29] |
TANDON S, FABER K T, BAZANT Z P, et al.Cohesive crack modeling of influence of sudden changes in loading rate on concrete fracture [J]. Engineering Fracture Mechanics, 1995, 52(6): 987–997. DOI: 10.1016/0013-7944(95)00080-F.
|
[30] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]//The 14th International Symposium Ballistics. USA: American Defense Preparedness Association, 1995, 591–600.
|
[31] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19: 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[32] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg Germany, 1999; 315.
|
[33] |
MONAGHAN J J, GINGOID R A. Shock simulation by the particle method SPH [J]. Journal of Computational Physics, 1983, 52(2): 374–389. DOI: 10.1016/0021-9991(83)90036-0.
|
[34] |
HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
|
[35] |
YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
|
[36] |
XU S, WU P, LI Q, et al. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive [J]. Cement and Concrete Composites, 2021, 119: 103989. DOI: 10.1016/j.cemconcomp.2021.103989.
|
[37] |
YUAN P C, XU S C, LIU J, et al. Experimental and numerical study of blast resistance of geopolymer based high performance concrete sandwich walls incorporated with metallic tube core [J]. Engineering Structures, 2023, 278: 115505. DOI: 10.1016/j.engstruct.2022.115505.
|
[38] |
HA Y D, BOBARU F. Studies of dynamic crack propagation and crack branching with peridynamics [J]. International Journal of Fracture, 2010, 162(1/2): 229–244. DOI: 10.1007/s10704-010-9442-4.
|
[39] |
SCHULER H, MAYRHOFER C, THOMA K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates [J]. International Journal of Impact Engineering, 2006, 32(10): 1635–1650. DOI: 10.1016/j.ijimpeng.2005.01.010.
|