| Citation: | CHEN Feixiang, ZHANG Guokai, HE Yong, WU Yuxin, LIU Liwang, DENG Guoqiang. Influence of tunnel structural confinement on shock wave and fireball generated by explosion of a thermobaric explosive in a tunnel[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0486 |
| [1] |
TÜRKER L. Thermobaric and enhanced blast explosives (TBX and EBX) [J]. Defence Technology, 2016, 12(6): 423–445. DOI: 10.1016/j.dt.2016.09.002.
|
| [2] |
SHIN J, PANG S, KIM W. Enhancing blast mitigation in tunnels with expansion chamber subjected to high explosives detonations for protecting underground facilities [J]. Tunnelling and Underground Space Technology, 2024, 147: 105720. DOI: 10.1016/j.tust.2024.105720.
|
| [3] |
CHEN F, MAO J F, ZHOU J, et al. Thermal environment inside a tunnel after thermobaric explosion [J]. Shock and Vibration, 2017, 2017: 5427485. DOI: 10.1155/2017/5427485.
|
| [4] |
刘泉, 姚箭, 宋先钊, 等. 初始环境压力对RDX基温压炸药冲击波超压和温度的影响 [J]. 北京理工大学学报, 2024, 44(9): 913–922. DOI: 10.15918/j.tbit.1001-0645.2023.218.
LIU Q, YAO J, SONG X Z, et al. Influence of initial ambient pressure on shockwave overpressure and temperature of RDX-based thermobaric explosive [J]. Transactions of Beijing Institute of Technology, 2024, 44(9): 913–922. DOI: 10.15918/j.tbit.1001-0645.2023.218.
|
| [5] |
李世民, 李晓军, 郭彦朋. 温压炸药自由场爆炸空气冲击波的数值模拟研究 [J]. 爆破, 2011, 28(3): 8–12. DOI: 10.3963/j.issn.1001-487X.2011.03.003.
LI S M, LI X J, GUO Y P. Numerical simulation study on airblast of thermobaric explosive explosion in free air [J]. Blasting, 2011, 28(3): 8–12. DOI: 10.3963/j.issn.1001-487X.2011.03.003.
|
| [6] |
茅靳丰, 陈飞, 侯普民. 温压炸药坑道口部爆炸冲击波毁伤效应研究 [J]. 力学季刊, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
MAO J F, CHEN F, HOU P M. Study on shock wave damage effects of thermobaric explosive explosion in tunnel entrance [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
|
| [7] |
TRZCIŃSKI W A, MAIZ L. Thermobaric and enhanced blast explosives: properties and testing methods [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 632–644. DOI: 10.1002/prep.201400281.
|
| [8] |
赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律 [J]. 含能材料, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
|
| [9] |
耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
|
| [10] |
纪玉国, 张国凯, 李干, 等. 坑道内爆炸条件下温压炸药的爆炸特性及其影响因素 [J]. 爆炸与冲击, 2024, 44(3): 032301. DOI: 10.11883/bzycj-2023-0011.
JI Y G, ZHANG G K, LI G, et al. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors [J]. Explosion and Shock Waves, 2024, 44(3): 032301. DOI: 10.11883/bzycj-2023-0011.
|
| [11] |
GOGULYA M F, BRAZHNIKOV M A. Pressure and temperature of the detonation products of explosive materials containing aluminum of various dispersities [J]. Russian Journal of Physical Chemistry B, 2010, 4(5): 773–787. DOI: 10.1134/S19907.93110050131.
|
| [12] |
MAIZ L, TRZCIŃSKI W A, PASZULA J. Optical spectroscopy to study confined and semi-closed explosions of homogeneous and composite charges [J]. Optics and Lasers in Engineering, 2017, 88: 111–119. DOI: 10.1016/j.optlaseng.2016.08.006.
|
| [13] |
闫潇敏, 苏健军, 李芝绒, 等. 坑道内温压炸药的爆炸热效应研究 [J]. 火工品, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-1480.2015.01.006.
YAN X M, SU J J, LI Z R, et al. Experimental study on explosive thermal effect of thermal-baric explosives in tunnel [J]. Initiators and Pyrotechnics, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-1480.2015.01.006.
|
| [14] |
LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: University of California Radiation Laboratory at Lawrence, 1968. DOI: 10.2172/4783904.
|
| [15] |
曹同堂, 周霖, 张向荣, 等. DNAN基熔铸炸药JWL状态方程参数的预估方法 [J]. 北京理工大学学报, 2017, 37(2): 141–145. DOI: 10.15918/j.tbit1001-0645.2017.02.006.
CAO T T, ZHOU L, ZHANG X R, et al. A method to predict JWL equation of state parameters for DNAN based melt-cast explosives [J]. Transactions of Beijing Institute of Technology, 2017, 37(2): 141–145. DOI: 10.15918/j.tbit1001-0645.2017.02.006.
|
| [16] |
陈朗, 冯长根, 赵玉华, 等. 含铝炸药爆轰数值模拟研究 [J]. 北京理工大学学报, 2001, 21(4): 415–419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
CHEN L, FENG C G, ZHAO Y H, et al. Numerical simulations of the detonation of aluminized explosives [J]. Transactions of Beijing Institute of Technology, 2001, 21(4): 415–419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
|
| [17] |
薛再清, 徐更光, 王廷增, 等. 用修正的KHT状态方程预报炸药爆轰性能 [J]. 北京理工大学学报, 1998, 18(3): 269–273.
XUE Z Q, XU G G, WANG T Z, et al. Using revised KHT equation of state to predict explosives’ detonation property [J]. Journal of Beijing Institute of Technology, 1998, 18(3): 269–273.
|
| [18] |
项大林, 荣吉利, 李健, 等. 基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 [J]. 北京理工大学学报, 2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.03.005.
XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.03.005.
|
| [19] |
张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
|
| [20] |
BIDABADI M, POORFAR A K, WANG S B, et al. A comparative study of different burning time models for the combustion of aluminum dust particles [J]. Applied Thermal Engineering, 2016, 105: 474–482. DOI: 10.1016/j.applthermaleng.2016.03.022.
|
| [21] |
张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
|
| [22] |
胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.
HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.
|
| [23] |
杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40. DOI: 10.11883/1001-1455(2003)01-0037-4.
YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40. DOI: 10.11883/1001-1455(2003)01-0037-4.
|
| [24] |
奥尔连科 Л П. 爆炸物理学 [M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011.
ОРЛЕНКО Л П. Explosion physics [M]. 3rd ed. SUN C W, trans. Beijing: Science Press, 2011.
|
| [25] |
KANG L M, LIU J P, YAO Y D, et al. Enhancing risk/safety management of HAN-based liquid propellant as a green space propulsion fuel: A study of its hazardous characteristics [J]. Process Safety and Environmental Protection, 2023, 177: 921–931. DOI: 10.1016/j.psep.2023.07.054.
|
| [26] |
LIU W J, BAI C H, LIU Q M, et al. Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics [J]. Combustion and Flame, 2020, 221: 41–49. DOI: 10.1016/j.combustflame.2020.07.025.
|