Citation: | LI Runzhi, LIU Mingshuai, HUANG Zichao, CAO Mengting, CHEN Xu, WANG Xiao. Research status and development trend of combustible gas explosion venting characteristics[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0493 |
[1] |
POKROVSKY O S, SHIROKOVA L S, KIRPOTIN S N, et al. Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone [J]. Biogeosciences, 2013, 10(8): 5349–5365. DOI: 10.5194/bg-10-5349-2013.
|
[2] |
仲冰, 张学秀, 张博, 等. 我国天然气掺氢产业发展研究 [J]. 中国工程科学, 2022, 24(3): 100–107. DOI: 10.15302/J-SSCAE-2022.03.011.
ZHONG B, ZHANG X X, ZHANG B, et al. Industrial development of hydrogen blending in natural gas pipelines in China [J]. Strategic Study of CAE, 2022, 24(3): 100–107. DOI: 10.15302/J-SSCAE-2022.03.011.
|
[3] |
韩元元, 李申涛, 李昕, 等. 甲烷变化及其气候效应的研究进展 [J]. 西安工程大学学报, 2024, 38(6): 17–28. DOI: 10.13338/j.issn.1674-649x.2024.06.003.
HAN Y Y, LI S T, LI X, et al. Research advance in changes and climate effect of methane [J]. Journal of Xi'an Polytechnic University, 2024, 38(6): 17–28. DOI: 10.13338/j.issn.1674-649x.2024.06.003.
|
[4] |
蒋敏华, 肖平, 刘入维, 等. 氢能在我国未来能源系统中的角色定位及“再电气化”路径初探 [J]. 热力发电, 2020, 49(1): 1–9. DOI: 10.19666/j.rlfd.201911238.
JIANG M H, XIAO P, LIU R W, et al. The role of hydrogen energy in China's future energy system and preliminary study on the route of re-electrification [J]. Thermal Power Generation, 2020, 49(1): 1–9. DOI: 10.19666/j.rlfd.201911238.
|
[5] |
WIERZBA I, KILCHYK V. Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures [J]. International Journal of Hydrogen Energy, 2001, 26(6): 639–643. DOI: 10.1016/S0360-3199(00)00114-2.
|
[6] |
SCHRÖDER V, EMONTS B, JANßEN H, et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar [J]. Chemical Engineering & Technology, 2004, 27(8): 847–851. DOI: 10.1002/ceat.200403174.
|
[7] |
张增亮, 蔡康旭. 可燃气体(液体蒸气)的爆炸极限与最大允许氧含量的对比研究 [J]. 中国安全科学学报, 2005, 15(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2005.12.015.
ZHANG Z L, CAI K X. Comparative study on relationship between explosion limits of flammable gases (liquefied vapors) and their maximum allowable oxygen contents [J]. China Safety Science Journal, 2005, 15(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2005.12.015.
|
[8] |
LIU X L, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen–air [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774–6782. DOI: 10.1016/j.ijhydene.2014.02.001.
|
[9] |
朱丕凯. 环境因素对甲烷爆炸极限浓度的影响研究 [J]. 煤炭技术, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
ZHU P K. Study on influence of ambient factors on methane explosive limit concentration [J]. Coal Technology, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
|
[10] |
喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
|
[11] |
李增华, 林柏泉, 张兰君, 等. 氢气的生成及对瓦斯爆炸的影响 [J]. 中国矿业大学学报, 2008, 37(2): 147–151. DOI: 10.3321/j.issn:1000-1964.2008.02.001.
LI Z H, LIN B Q, ZHANG L J, et al. Effects of hydrogen production on gas explosion [J]. Journal of China University of Mining & Technology, 2008, 37(2): 147–151. DOI: 10.3321/j.issn:1000-1964.2008.02.001.
|
[12] |
ZHANG B. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23532–23537. DOI: 10.1016/j.ijhydene.2019.07.053.
|
[13] |
万小刚, 刘伟, 方坦, 等. 甲烷添加对氢气燃爆特性的影响 [J]. 力学与实践, 2022, 44(4): 786–793. DOI: 10.6052/1000-0879-22-158.
WAN X G, LIU W, FANG T, et al. Effect of methane addition on hydrogen combusiton and explosion characteristics [J]. Mechanics in Engineering, 2022, 44(4): 786–793. DOI: 10.6052/1000-0879-22-158.
|
[14] |
MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. DOI: 10.1016/j.psep.2019.07.012.
|
[15] |
郑立刚, 余明高, 于水军. 多元混合气爆炸极限的非线性预测研究 [J]. 中国安全科学学报, 2006(10): 94–99+2. DOI: 10.16265/j.cnki.issn1003-3033.2006.10.016.
ZHENG L G, YU M G, YU S J. Nonlinear Prediction on Explosion Limits of Explosive Multi-component Gas Mixtures [J]. China Safety Science Journal, 2006(10): 94–99+2. DOI: 10.16265/j.cnki.issn1003-3033.2006.10.016.
|
[16] |
胡锐, 吴小华, 胡耀元. (H2+CO+CH4+Air)多元爆炸性混合气体爆炸形态与波形的区划 [J]. 化学学报, 2010, 68(7): 623–632.
HU R, WU X H, HU Y Y. Compartmentalization of explosive morphology and waveforms of multicomponent gas mixture consisting of H2, CO, CH4 and air [J]. Acta Chimica Sinica, 2010, 68(7): 623–632.
|
[17] |
SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
|
[18] |
马秋菊, 万孟赛, 邵俊程, 等. 多元可燃气体爆炸极限理论预测模型研究 [J]. 中国安全生产科学技术, 2021, 17(4): 54–59. DOI: 10.11731/j.issn.1673-193x.2021.04.009.
MA Q J, WAN M S, SHAO J C, et al. Study on theoretical prediction model for explosion limit of multi-component combustible gases [J]. Journal of Safety Science and Technology, 2021, 17(4): 54–59. DOI: 10.11731/j.issn.1673-193x.2021.04.009.
|
[19] |
吴华杰, 孙云厚, 郑磊, 等. 可燃气体爆炸极限的理论预测方法研究 [J]. 山西建筑, 2022, 48(13): 73–75,113. DOI: 10.13719/j.cnki.1009-6825.2022.13.018.
WU H J, SUN Y H, ZHENG L, et al. Research on the theoretical prediction method of combustible gas explosion limit [J]. Shanxi Architecture, 2022, 48(13): 73–75,113. DOI: 10.13719/j.cnki.1009-6825.2022.13.018.
|
[20] |
胡芳芳, 贾月, 王文涛, 等. 受限空间内乙炔/空气预混气体燃爆特性研究 [J]. 火工品, 2022(6): 50–55. DOI: 10.3969/j.issn.1003-1480.2022.06.011.
HU F F, JIA Y, WANG W T, et al. Explosion characteristics of acetylene/air mixtures in confined space [J]. Initiators & Pyrotechnics, 2022(6): 50–55. DOI: 10.3969/j.issn.1003-1480.2022.06.011.
|
[21] |
张发, 任常兴, 涂鹏, 等. 超细干粉在油气环境中的抑爆效能 [J]. 消防科学与技术, 2015, 34(9): 1214–1217. DOI: 10.3969/j.issn.1009-0029.2015.09.026.
ZHANG F, REN C X, TU P, et al. Oil gas explosion suppression by super fine powder [J]. Fire Science and Technology, 2015, 34(9): 1214–1217. DOI: 10.3969/j.issn.1009-0029.2015.09.026.
|
[22] |
杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
|
[23] |
蒋新生, 魏树旺, 何标, 等. 不同位置分支管道对油气爆炸强度的影响 [J]. 振动与冲击, 2017, 36(8): 231–236. DOI: 10.13465/j.cnki.jvs.2017.08.036.
JIANG X S, WEI S W, HE B, et al. Effect on explosion intensity of gasoline-air mixture in a pipe containing different positions of branch [J]. Journal of Vibration and Shock, 2017, 36(8): 231–236. DOI: 10.13465/j.cnki.jvs.2017.08.036.
|
[24] |
CUI Y Q, WANG Z R, JIANG J C, et al. Size effect on explosion intensity of methane-air mixture in spherical vessels and pipes [J]. Procedia Engineering, 2012, 45: 483–488. DOI: 10.1016/j.proeng.2012.08.190.
|
[25] |
尹旺华, 毕明树, 丁信伟, 等. 障碍物对开敞空间蒸气云爆炸强度的加强作用 [J]. 石油化工设备, 2003, 32(1): 38–41. DOI: 10.3969/j.issn.1000-7466.2003.01.014.
YIN W H, BI M S, DING X W, et al. Enhancement effection of obstacles for the power of UVCEs [J]. Petro-Chemical Equipment, 2003, 32(1): 38–41. DOI: 10.3969/j.issn.1000-7466.2003.01.014.
|
[26] |
马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.
MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.
|
[27] |
JIA J Z, CHEN Y N, CHE G B, et al. Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks [J]. Scientific Reports, 2021, 11(1): 21204. DOI: 10.1038/s41598-021-00722-8.
|
[28] |
TRAN M V, SCRIBANO G, CHONG C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2018, 43(16): 8152–8160. DOI: 10.1016/j.ijhydene.2018.03.077.
|
[29] |
邓军, 马晓峰, 商铁林, 等. 多元可燃气体爆炸压力峰值的数值模拟 [J]. 煤矿安全, 2014, 45(4): 13–16,20. DOI: 10.13347/j.cnki.mkaq.2014.04.004.
DENG J, MA X F, SHANG T L, et al. Numerical simulation of peak pressure for multiple combustible gase [J]. Safety in Coal Mines, 2014, 45(4): 13–16,20. DOI: 10.13347/j.cnki.mkaq.2014.04.004.
|
[30] |
贾宝山, 李春苗, 胡如霞, 等. CO、H2混合气体对瓦斯爆炸的协同作用机理研究 [J]. 世界科技研究与发展, 2016, 38(1): 35–39,58. DOI: 10.16507/j.issn.1006-6055.2016.01.008.
JIA B S, LI C M, HU R X, et al. Study on synergistic effect mechanism of CO, H2 mixed gas on methane explosion [J]. World Sci-Tech R & D, 2016, 38(1): 35–39,58. DOI: 10.16507/j.issn.1006-6055.2016.01.008.
|
[31] |
LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
|
[32] |
CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 607–613. DOI: 10.1016/j.jlp.2009.05.001.
|
[33] |
张春燕, 陶刚, 涂善东, 等. 低压氢气-空气混合物爆炸试验研究及数值模拟 [J]. 中国安全科学学报, 2018, 28(2): 87–92. DOI: 10.16265/j.cnki.issn1003-3033.2018.02.015.
ZHANG C Y, TAO G, TU S D, et al. Experimental study and numerical simulation of low-pressure hydrogen-air mixture explosion [J]. China Safety Science Journal, 2018, 28(2): 87–92. DOI: 10.16265/j.cnki.issn1003-3033.2018.02.015.
|
[34] |
ZHANG Y, CAO W G, SHU C M, et al. Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel [J]. Fuel, 2020, 261: 116433. DOI: 10.1016/j.fuel.2019.116433.
|
[35] |
高娜. 初始温度和初始压力对瓦斯爆炸特性的影响研究 [D]. 南京: 南京理工大学, 2016.
GAO N. Study on influence of initial temperature and pressure on gas explosion characteristics [D]. Nanjing: Nanjing University of Science & Technology, 2016.
|
[36] |
王振兴, 王洋, 韩东洋, 等. 氢气对瓦斯爆炸化学动力学行为影响研究 [J]. 煤炭与化工, 2022, 45(9): 140–145. DOI: 10.19286/j.cnki.cci.2022.09.038.
WANG Z X, WANG Y, HAN D Y, et al. Study on the influence of hydrogen on chemical kinetic behavior of gas explosion [J]. Coal and Chemical Industry, 2022, 45(9): 140–145. DOI: 10.19286/j.cnki.cci.2022.09.038.
|
[37] |
迟明华, 蒋宏业, 吕超, 等. 输气管道高后果区蒸气云爆炸超压预测方法探究 [J]. 中国安全生产科学技术, 2023, 19(4): 121–127. DOI: 10.11731/j.issn.1673-193x.2023.04.017.
CHI M H, JIANG H Y, LYU C, et al. Study on overpressure prediction method of vapor cloud explosion in high-consequence area of gas pipeline [J]. Journal of Safety Science and Technology, 2023, 19(4): 121–127. DOI: 10.11731/j.issn.1673-193x.2023.04.017.
|
[38] |
仇锐来. 点火能量对瓦斯爆炸火焰传播速度的影响 [J]. 煤炭科学技术, 2011, 39(3): 52–55. DOI: 10.13199/j.cst.2011.03.57.qiurl.023.
QIU R L. Ignition energy influenced to travel speed of gas explosion flame [J]. Coal Science and Technology, 2011, 39(3): 52–55. DOI: 10.13199/j.cst.2011.03.57.qiurl.023.
|
[39] |
王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响 [J]. 中南大学学报(自然科学版), 2022, 53(2): 433–442. DOI: 10.11817/j.issn.1672-7207.2022.02.008.
WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433–442. DOI: 10.11817/j.issn.1672-7207.2022.02.008.
|
[40] |
YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536. DOI: 10.1080/15567036.2023.2205357.
|
[41] |
VU T M, PARK J, KIM J S, et al. Experimental study on cellular instabilities in hydrocarbon/hydrogen/carbon monoxide-air premixed flames [J]. International Journal of Hydrogen Energy, 2011, 36(11): 6914–6924. DOI: 10.1016/j.ijhydene.2011.02.085.
|
[42] |
OKAFOR E C, HAYAKAWA A, NAGANO Y, et al. Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air [J]. International Journal of Hydrogen Energy, 2014, 39(5): 2409–2417. DOI: 10.1016/j.ijhydene.2013.11.128.
|
[43] |
朱红钧, 李佳男, 陈俊文, 等. 混氢天然气管道放空自燃过程数值模拟分析 [J]. 天然气工业, 2023, 43(9): 149–161. DOI: 10.3787/j.issn.1000-0976.2023.09.015.
ZHU H J, LI J N, CHEN J W, et al. Numerical simulation analysis of the spontaneous combustion process during the venting of hydrogen-mixed natural gas line pipes [J]. Natural Gas Industry, 2023, 43(9): 149–161. DOI: 10.3787/j.issn.1000-0976.2023.09.015.
|
[44] |
喻健良, 李通征, 闫兴清, 等. 贫燃条件下氢气比例对甲烷/氢气预混气火焰传播的影响 [J]. 安全与环境学报, 2022, 22(5): 2366–2371. DOI: 10.13637/j.issn.1009-6094.2021.0788.
YU J L, LI T Z, YAN X Q, et al. Effect of hydrogen ratio on flame propagation of CH4-H2 premixed gas under fuel-lean conditions [J]. Journal of Safety and Environment, 2022, 22(5): 2366–2371. DOI: 10.13637/j.issn.1009-6094.2021.0788.
|
[45] |
GUO L, ZHAI M, XU S J, et al. Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space [J]. International Journal of Hydrogen Energy, 2022, 47(44): 19319–19337. DOI: 10.1016/j.ijhydene.2022.04.091.
|
[46] |
ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3871–3884. DOI: 10.1016/j.ijhydene.2018.01.045.
|
[47] |
KIM W K, MOGI T, DOBASHI R. Fundamental study on accidental explosion behavior of hydrogen-air mixtures in an open space [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8024–8029. DOI: 10.1016/j.ijhydene.2013.03.101.
|
[48] |
YU Z J, CHEN S S, GU Y, et al. Premixed flame propagation of methane/carbon monoxide/air in a closed tube with an obstacle [J]. Combustion Science and Technology, 2021, 193(15): 2724–2740. DOI: 10.1080/00102202.2020.1758077.
|
[49] |
庞磊, 胡倩然, 马菲菲, 等. 泄爆面特征参数对天然气爆炸超压峰值的影响规律 [J]. 中国安全生产科学技术, 2020, 16(4): 126–131. DOI: 10.11731/j.issn.1673-193x.2020.04.020.
PANG L, HU Q R, MA F F, et al. Effect of vent characteristic parameters on overpressure peaks of natural gas explosion [J]. Journal of Safety Science and Technology, 2020, 16(4): 126–131. DOI: 10.11731/j.issn.1673-193x.2020.04.020.
|
[50] |
孙松, 王明洋, 高康华, 等. 大尺度泄爆构件对室内爆燃压力影响的实验研究 [J]. 爆炸与冲击, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.
SUN S, WANG M Y, GAO K H, et al. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure [J]. Explosion and Shock Waves, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.
|
[51] |
吕鹏飞, 朱澍成, 刘开沅, 等. 水平管道泄爆面开启压力对甲烷爆燃压力的影响 [J]. 中国安全生产科学技术, 2022, 18(7): 157–163. DOI: 10.11731/j.issn.1673-193x.2022.07.023.
LYU P F, ZHU S C, LIU K Y, et al. Influence of venting surface opening pressure on methane deflagration pressure in horizontal pipe [J]. Journal of Safety Science and Technology, 2022, 18(7): 157–163. DOI: 10.11731/j.issn.1673-193x.2022.07.023.
|
[52] |
陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
|
[53] |
QIU Y Y, XING H D, SUN S, et al. Experimental study of the effects of vent area and ignition position on internal and external pressure characteristics of venting explosion [J]. Fuel, 2021, 300: 120935. DOI: 10.1016/j.fuel.2021.120935.
|
[54] |
郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
HAO T T, WANG C J, YAN W J, et al. Structural dynamical characteristics induced by vented hydrogen explosion [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
|
[55] |
田雷, 毕海普. 工业弯管泄爆位置对爆炸压力的影响规律研究 [J]. 消防科学与技术, 2023, 42(11): 1477–1482. DOI: 10.3969/j.issn.1009-0029.2023.11.005.
TIAN L, BI H P. Study on the influence of explosion relief position on explosion pressure for industrial bend pipe [J]. Fire Science and Technology, 2023, 42(11): 1477–1482. DOI: 10.3969/j.issn.1009-0029.2023.11.005.
|
[56] |
张庆武, 蒋军成, 喻源, 等. 泄爆导管对球形容器内气体爆炸泄放过程影响的试验 [J]. 安全与环境学报, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
ZHANG Q W, JIANG J C, YU Y, et al. Experimental study over the effect of the relief duct on the venting of gas explosion in a spherical vessel [J]. Journal of Safety and Environment, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
|
[57] |
TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169–181. DOI: 10.1016/j.jlp.2015.04.014.
|
[58] |
CAO Y, LI B, XIE L F, et al. Experimental and numerical study on pressure dynamic and venting characteristic of methane-air explosion in the tube with effect of methane concentration and vent burst pressure [J]. Fuel, 2022, 316: 123311. DOI: 10.1016/j.fuel.2022.123311.
|
[59] |
CHEN Y, YUAN D C, GUO J, et al. Research on mechanism and influence factors of the overpressure development in vented hydrogen deflagrations based on numerical simulation [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22681–22690. DOI: 10.1016/j.ijhydene.2019.03.200.
|
[60] |
CHEN Y, LI Y, LI Z T, et al. Effect of vent area, vent location and number of vents on vented hydrogen deflagrations in a 27 m3 chamber [J]. International Journal of Hydrogen Energy, 2020, 45(55): 31268–31277. DOI: 10.1016/j.ijhydene.2020.08.032.
|
[61] |
路长, 李明月, 郭洪江, 等. 非对称泄爆条件下甲烷爆炸双向传播特性的研究 [J]. 火工品, 2024(3): 91–96. DOI: 10.3969/j.issn.1003-1480.2024.03.015.
LU C, LI M Y, GUO H J, et al. Study on the bidirectional propagation characteristics of methane explosion under asymmetric venting condition [J]. Initiators & Pyrotechnics, 2024(3): 91–96. DOI: 10.3969/j.issn.1003-1480.2024.03.015.
|
[62] |
姜孝海, 范宝春, 叶经方, 等. 泄爆过程中二次爆炸的动力学机理研究 [J]. 力学学报, 2005, 37(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.
JIANG X H, FAN B C, YE J F, et al. Dynamics in external secondary explosion during venting [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.
|
[63] |
张嘉玮. 掺氢预混燃气燃烧爆炸特性及密闭空间泄爆仿真研究 [D]. 镇江: 江苏科技大学, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099.
ZHANG J W. Simulation study on combustion and explosion characteristics of hydrogen-doped premixed gas and confined space explosion release [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099.
|
[64] |
时静洁, 赵薇, 陈小林, 等. 泄爆口参数对氢气火焰传播过程影响的数值模拟 [J]. 中国安全生产科学技术, 2022, 18(7): 178–186. DOI: 10.11731/j.issn.1673-193x.2022.07.026.
SHI J J, ZHAO W, CHEN X L, et al. Numerical simulation on influence of explosion vent parameters on flame propagation process of hydrogen [J]. Journal of Safety Science and Technology, 2022, 18(7): 178–186. DOI: 10.11731/j.issn.1673-193x.2022.07.026.
|
[65] |
宋双林, 刘磊, 田富超, 等. 不同泄爆位置对甲烷/空气爆炸特性的影响 [J]. 煤矿安全, 2023, 54(11): 48–54. DOI: 10.13347/j.cnki.mkaq.2023.11.009.
SONG S L, LIU L, TIAN F C, et al. Influence of different explosion venting positions on methane/air explosion characteristics [J]. Safety in Coal Mines, 2023, 54(11): 48–54. DOI: 10.13347/j.cnki.mkaq.2023.11.009.
|
[66] |
钟委, 蒋雨阳, 韩宁, 等. 泄爆夹层内障碍物对泄爆效果影响的数值模拟研究 [J]. 中国安全生产科学技术, 2022, 18(12): 162–168. DOI: 10.11731/j.issn.1673-193x.2022.12.023.
ZHONG W, JIANG Y Y, HAN N, et al. Numerical simulation on influence of obstacle in explosion-venting interlayer on explosion-venting effect [J]. Journal of Safety Science and Technology, 2022, 18(12): 162–168. DOI: 10.11731/j.issn.1673-193x.2022.12.023.
|
[67] |
唐泽斯, 郭进, 张苏, 等. 甲烷-空气预混气体泄爆作用下容器振动响应特性 [J]. 福州大学学报 (自然科学版), 2020, 48(2): 263–268. DOI: 10.7631/issn.1000-2243.19411.
TANG Z S, GUO J, ZHANG S, et al. Analysis of vibration response characteristics of explosive vessels during methane-air mixtures explosion [J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(2): 263–268. DOI: 10.7631/issn.1000-2243.19411.
|
[68] |
GUO J, WANG C J, LI Q, et al. Effect of the vent burst pressure on explosion venting of rich methane-air mixtures in a cylindrical vessel [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 82–88. DOI: 10.1016/j.jlp.2015.12.006.
|
[69] |
陈先锋, 张椿城, 李毅, 等. 刚/柔性障碍物对甲烷/空气预混气体泄爆动力学的影响 [J]. 安全与环境学报, 2023, 23(4): 1101–1107. DOI: 10.13637/j.issn.1009-6094.2022.0073.
CHEN X F, ZHANG C C, LI Y, et al. Effect of different types of obstacles on venting dynamics of methane/air premixed gas [J]. Journal of Safety and Environment, 2023, 23(4): 1101–1107. DOI: 10.13637/j.issn.1009-6094.2022.0073.
|
[70] |
高伟, 高轩能. 内爆炸下单层网壳的破坏模式和泄爆阀值研究 [J]. 振动与冲击, 2023, 42(22): 220–229. DOI: 10.13465/j.cnki.jvs.2023.22.025.
GAO W, GAO X N. Failure modes and the explosion venting threshold of a single-layer reticulated shell under internal explosion [J]. Journal of Vibration and Shock, 2023, 42(22): 220–229. DOI: 10.13465/j.cnki.jvs.2023.22.025.
|
[71] |
韩晓琦, 吴宙遨, 钟圣俊, 等. 爆炸泄压装置型式试验和泄爆效率计算 [J]. 电气防爆, 2023(3): 22–26. DOI: 10.14023/j.cnki.dqfb.2023.03.007.
HAN X Q, WU Z A, ZHONG S J, et al. Type test and venting efficiency of explosion venting device [J]. Electric Explosion Protection, 2023(3): 22–26. DOI: 10.14023/j.cnki.dqfb.2023.03.007.
|
[72] |
金友平, 帅健, 王文想, 等. 基于重大事故场景的受限空间内燃气泄漏情景模拟及泄爆优化研究 [J]. 高压物理学报, 2023, 37(6): 065201. DOI: 10.11858/gywlxb.20230658.
JIN Y P, SHUAI J, WANG W X, et al. Leakage characteristics of flammable gas in confined space and the optimum design of explosion venting: numerical simulation on basis of the major accident [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065201. DOI: 10.11858/gywlxb.20230658.
|
[73] |
崔东明, 杜志敏. 泄爆过程中外部爆炸现象的实验研究 [J]. 力学学报, 2006, 38(3): 371–380. DOI: 10.3321/j.issn:0459-1879.2006.03.012.
CUI D M, DU Z M. Experimental studies on external explosions during venting explosions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 371–380. DOI: 10.3321/j.issn:0459-1879.2006.03.012.
|
[74] |
KODAKOGLU F, FARAHANI H F, RANGWALA A S, et al. Dynamics of explosion venting in a compartment with methane-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104230. DOI: 10.1016/j.jlp.2020.104230.
|
[75] |
LUO X J, WANG C J, RUI S C, et al. Effects of ignition location, obstacles, and vent location on the vented hydrogen-air deflagrations with low vent burst pressure in a 20-foot container [J]. Fuel, 2020, 280: 118677. DOI: 10.1016/j.fuel.2020.118677.
|
[76] |
耿继辉, 李鸿志. 密闭容器泄爆过程内外场数值计算 [C]//第十届全国激波与激波管学术讨论会论文集. 黄山: 中国力学学会直属激波与激波管专业组, 中国科学技术大学力学和机械工程系, 中国科学院力学所高温气体动力学重点实验室, 2002: 5.
|
[77] |
WANG Y X, LIAN Z, ZHANG Q. Effect of ignition location and vent on hazards of indoor liquefied petroleum gas explosion [J]. Combustion Science and Technology, 2017, 189(4): 698–716. DOI: 10.1080/00102202.2016.1246442.
|
[78] |
陈晔, 李毅, 李紫婷, 等. 受限空间氢泄爆外部超压特性研究 [J]. 消防科学与技术, 2022, 41(3): 310–315. DOI: 10.3969/j.issn.1009-0029.2022.03.005.
CHEN Y, LI Y, LI Z T, et al. Study on the characteristics of external overpressure induced by vented hydrogen deflagrations [J]. Fire Science and Technology, 2022, 41(3): 310–315. DOI: 10.3969/j.issn.1009-0029.2022.03.005.
|
[79] |
SUN S, WANG M Y, QIU Y Y, et al. Effect of a hinged rotating vent cover on a vented explosion [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 186–193. DOI: 10.1016/j.jlp.2018.12.002.
|
[80] |
姜孝海, 范宝春, 叶经方. 泄爆诱导的湍流、旋涡和外部爆炸 [J]. 应用数学和力学, 2004, 25(12): 1271–1277. DOI: 10.3321/j.issn:1000-0887.2004.12.008.
JIANG X H, FAN B C, YE J F. Turbulence, vortex and external explosion induced by venting [J]. Applied Mathematics and Mechanics, 2004, 25(12): 1271–1277. DOI: 10.3321/j.issn:1000-0887.2004.12.008.
|
[81] |
范宝春, 姜孝海. 高压泄爆导致的二次爆炸 [J]. 爆炸与冲击, 2005, 25(1): 11–16. DOI: 10.11883/1001-1455(2005)01-0011-06.
FAN B C, JIANG X H. Secondary explosion induced by vented explosion [J]. Explosion and Shock Waves, 2005, 25(1): 11–16. DOI: 10.11883/1001-1455(2005)01-0011-06.
|
[82] |
姜孝海, 范宝春, 叶经方. 泄爆外流场特性的试验研究 [J]. 实验力学, 2005, 20(2): 171–178. DOI: 10.3969/j.issn.1001-4888.2005.02.003.
JIANG X H, FAN B C, YE J F. Experimental investigations on external flow field in explosion venting [J]. Journal of Experimental Mechanics, 2005, 20(2): 171–178. DOI: 10.3969/j.issn.1001-4888.2005.02.003.
|
[83] |
叶经方, 姜孝海, 贾正望, 等. 泄爆诱导二次爆炸的实验研究 [J]. 爆炸与冲击, 2004, 24(4): 356–362. DOI: 10.11883/1001-1455(2004)04-0356-7.
YE J F, JIANG X H, JIA Z W, et al. Experimental investigations of external second-explosion induced by vented explosion [J]. Explosion and Shock Waves, 2004, 24(4): 356–362. DOI: 10.11883/1001-1455(2004)04-0356-7.
|
[84] |
PROUST C, LEPRETTE E. The dynamics of vented gas explosions [J]. Process Safety Progress, 2010, 29(3): 231–235. DOI: 10.1002/prs.10368.
|
[85] |
马秋菊, 邵俊程, 万孟赛, 等. 点火位置对容器外部二次爆炸影响研究 [J]. 中国安全科学学报, 2021, 31(9): 90–98. DOI: 10.16265/j.cnki.issn1003-3033.2021.09.013.
MA Q J, SHAO J C, WAN M S, et al. Impacts of ignition position on secondary explosion outside vessels [J]. China Safety Science Journal, 2021, 31(9): 90–98. DOI: 10.16265/j.cnki.issn1003-3033.2021.09.013.
|
[86] |
MA Q J, HE Y, GUO Y H, et al. Research on the effect of the vent area on the external deflagration process during the explosion vent [J]. Fuel, 2022, 329: 125440. DOI: 10.1016/j.fuel.2022.125440.
|
[87] |
WANG C H, GUO J, WANG H Z, et al. Duct-vented explosion of stoichiometric hydrogen/methane/air mixtures at various hydrogen ratios [J]. Fuel, 2023, 333: 126376. DOI: 10.1016/j.fuel.2022.126376.
|
[88] |
YANG F Q, GUO J, WANG C J, et al. Duct-vented hydrogen-air deflagrations: the effect of duct length and hydrogen concentration [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21142–21148. DOI: 10.1016/j.ijhydene.2018.09.074.
|
[89] |
ZHANG S, TANG Z S, LI J L, et al. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen–air deflagrations in an end-vented duct with an obstacle [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100–26108. DOI: 10.1016/j.ijhydene.2019.08.057.
|
[90] |
PANG L, HU Q R, ZHAO J J, et al. Numerical study of the effects of vent opening time on hydrogen explosions [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15689–15701. DOI: 10.1016/j.ijhydene.2019.04.175.
|
[91] |
RUI S C, GUO J, LI G, et al. The effect of vent burst pressure on a vented hydrogen-air deflagration in a 1 m3 vessel [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21169–21176. DOI: 10.1016/j.ijhydene.2018.09.124.
|
[92] |
杜志敏. 泄爆过程中二次爆炸等异常现象的实验研究 [D]. 南京: 南京理工大学, 2004.
|
[93] |
李文炜, 郑建伟, 杜清. 某餐馆LPG泄漏一次闪爆二次爆炸事故的模拟分析 [J]. 中国化工装备, 2023, 25(2): 13–18. DOI: 10.3969/j.issn.1671-0525.2023.02.003.
LI W W, ZHENG J W, DU Q. Simulation analysis on the explosions in a restaurant [J]. China Chemical Industry Equipment, 2023, 25(2): 13–18. DOI: 10.3969/j.issn.1671-0525.2023.02.003.
|