• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LI Runzhi, LIU Mingshuai, HUANG Zichao, CAO Mengting, CHEN Xu, WANG Xiao. Research status and development trend of combustible gas explosion venting characteristics[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0493
Citation: LI Runzhi, LIU Mingshuai, HUANG Zichao, CAO Mengting, CHEN Xu, WANG Xiao. Research status and development trend of combustible gas explosion venting characteristics[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0493

Research status and development trend of combustible gas explosion venting characteristics

doi: 10.11883/bzycj-2024-0493
  • Received Date: 2024-12-19
  • Rev Recd Date: 2025-05-22
  • Available Online: 2025-05-26
  • Explosion venting is one of the effective ways to prevent and control the hazards of combustible gas explosions, but the process of venting there may be a secondary explosion of the external venting gas cloud, how to achieve an effective explosion venting of combustible gas explosions to reduce the hazards posed by the explosion, has become a key direction of the current research. To this end, from the combustible gas explosion characteristics, combustible gas explosion venting characteristics and explosion venting of the external flow field of the secondary explosion and other aspects of the current domestic and foreign combustible gas explosion venting characteristics of the current research situation is summarized and analyzed, and found that the explosion risk of the pluralistic mixed system is difficult to accurately predict and evaluate, the internal and external flow field coupling explosion venting mechanism is not yet in-depth, the characterization of the explosion venting effect and the critical conditions of the secondary explosion is unknown. Based on the above problems, the outlook from the exploration of combustible gas explosion risk and disaster-causing mechanism, deepen the combustible gas explosion venting overpressure and flame evolution characteristics of the study, revealing the formation mechanism of the secondary explosion of the explosion venting external flow field. This provides an important reference for the future study of combustible gas explosion venting.
  • loading
  • [1]
    POKROVSKY O S, SHIROKOVA L S, KIRPOTIN S N, et al. Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone [J]. Biogeosciences, 2013, 10(8): 5349–5365. DOI: 10.5194/bg-10-5349-2013.
    [2]
    仲冰, 张学秀, 张博, 等. 我国天然气掺氢产业发展研究 [J]. 中国工程科学, 2022, 24(3): 100–107. DOI: 10.15302/J-SSCAE-2022.03.011.

    ZHONG B, ZHANG X X, ZHANG B, et al. Industrial development of hydrogen blending in natural gas pipelines in China [J]. Strategic Study of CAE, 2022, 24(3): 100–107. DOI: 10.15302/J-SSCAE-2022.03.011.
    [3]
    韩元元, 李申涛, 李昕, 等. 甲烷变化及其气候效应的研究进展 [J]. 西安工程大学学报, 2024, 38(6): 17–28. DOI: 10.13338/j.issn.1674-649x.2024.06.003.

    HAN Y Y, LI S T, LI X, et al. Research advance in changes and climate effect of methane [J]. Journal of Xi'an Polytechnic University, 2024, 38(6): 17–28. DOI: 10.13338/j.issn.1674-649x.2024.06.003.
    [4]
    蒋敏华, 肖平, 刘入维, 等. 氢能在我国未来能源系统中的角色定位及“再电气化”路径初探 [J]. 热力发电, 2020, 49(1): 1–9. DOI: 10.19666/j.rlfd.201911238.

    JIANG M H, XIAO P, LIU R W, et al. The role of hydrogen energy in China's future energy system and preliminary study on the route of re-electrification [J]. Thermal Power Generation, 2020, 49(1): 1–9. DOI: 10.19666/j.rlfd.201911238.
    [5]
    WIERZBA I, KILCHYK V. Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures [J]. International Journal of Hydrogen Energy, 2001, 26(6): 639–643. DOI: 10.1016/S0360-3199(00)00114-2.
    [6]
    SCHRÖDER V, EMONTS B, JANßEN H, et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar [J]. Chemical Engineering & Technology, 2004, 27(8): 847–851. DOI: 10.1002/ceat.200403174.
    [7]
    张增亮, 蔡康旭. 可燃气体(液体蒸气)的爆炸极限与最大允许氧含量的对比研究 [J]. 中国安全科学学报, 2005, 15(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2005.12.015.

    ZHANG Z L, CAI K X. Comparative study on relationship between explosion limits of flammable gases (liquefied vapors) and their maximum allowable oxygen contents [J]. China Safety Science Journal, 2005, 15(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2005.12.015.
    [8]
    LIU X L, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen–air [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774–6782. DOI: 10.1016/j.ijhydene.2014.02.001.
    [9]
    朱丕凯. 环境因素对甲烷爆炸极限浓度的影响研究 [J]. 煤炭技术, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.

    ZHU P K. Study on influence of ambient factors on methane explosive limit concentration [J]. Coal Technology, 2019, 38(6): 108–111. DOI: 10.13301/j.cnki.ct.2019.06.038.
    [10]
    喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [11]
    李增华, 林柏泉, 张兰君, 等. 氢气的生成及对瓦斯爆炸的影响 [J]. 中国矿业大学学报, 2008, 37(2): 147–151. DOI: 10.3321/j.issn:1000-1964.2008.02.001.

    LI Z H, LIN B Q, ZHANG L J, et al. Effects of hydrogen production on gas explosion [J]. Journal of China University of Mining & Technology, 2008, 37(2): 147–151. DOI: 10.3321/j.issn:1000-1964.2008.02.001.
    [12]
    ZHANG B. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23532–23537. DOI: 10.1016/j.ijhydene.2019.07.053.
    [13]
    万小刚, 刘伟, 方坦, 等. 甲烷添加对氢气燃爆特性的影响 [J]. 力学与实践, 2022, 44(4): 786–793. DOI: 10.6052/1000-0879-22-158.

    WAN X G, LIU W, FANG T, et al. Effect of methane addition on hydrogen combusiton and explosion characteristics [J]. Mechanics in Engineering, 2022, 44(4): 786–793. DOI: 10.6052/1000-0879-22-158.
    [14]
    MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. DOI: 10.1016/j.psep.2019.07.012.
    [15]
    郑立刚, 余明高, 于水军. 多元混合气爆炸极限的非线性预测研究 [J]. 中国安全科学学报, 2006(10): 94–99+2. DOI: 10.16265/j.cnki.issn1003-3033.2006.10.016.

    ZHENG L G, YU M G, YU S J. Nonlinear Prediction on Explosion Limits of Explosive Multi-component Gas Mixtures [J]. China Safety Science Journal, 2006(10): 94–99+2. DOI: 10.16265/j.cnki.issn1003-3033.2006.10.016.
    [16]
    胡锐, 吴小华, 胡耀元. (H2+CO+CH4+Air)多元爆炸性混合气体爆炸形态与波形的区划 [J]. 化学学报, 2010, 68(7): 623–632.

    HU R, WU X H, HU Y Y. Compartmentalization of explosive morphology and waveforms of multicomponent gas mixture consisting of H2, CO, CH4 and air [J]. Acta Chimica Sinica, 2010, 68(7): 623–632.
    [17]
    SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
    [18]
    马秋菊, 万孟赛, 邵俊程, 等. 多元可燃气体爆炸极限理论预测模型研究 [J]. 中国安全生产科学技术, 2021, 17(4): 54–59. DOI: 10.11731/j.issn.1673-193x.2021.04.009.

    MA Q J, WAN M S, SHAO J C, et al. Study on theoretical prediction model for explosion limit of multi-component combustible gases [J]. Journal of Safety Science and Technology, 2021, 17(4): 54–59. DOI: 10.11731/j.issn.1673-193x.2021.04.009.
    [19]
    吴华杰, 孙云厚, 郑磊, 等. 可燃气体爆炸极限的理论预测方法研究 [J]. 山西建筑, 2022, 48(13): 73–75,113. DOI: 10.13719/j.cnki.1009-6825.2022.13.018.

    WU H J, SUN Y H, ZHENG L, et al. Research on the theoretical prediction method of combustible gas explosion limit [J]. Shanxi Architecture, 2022, 48(13): 73–75,113. DOI: 10.13719/j.cnki.1009-6825.2022.13.018.
    [20]
    胡芳芳, 贾月, 王文涛, 等. 受限空间内乙炔/空气预混气体燃爆特性研究 [J]. 火工品, 2022(6): 50–55. DOI: 10.3969/j.issn.1003-1480.2022.06.011.

    HU F F, JIA Y, WANG W T, et al. Explosion characteristics of acetylene/air mixtures in confined space [J]. Initiators & Pyrotechnics, 2022(6): 50–55. DOI: 10.3969/j.issn.1003-1480.2022.06.011.
    [21]
    张发, 任常兴, 涂鹏, 等. 超细干粉在油气环境中的抑爆效能 [J]. 消防科学与技术, 2015, 34(9): 1214–1217. DOI: 10.3969/j.issn.1009-0029.2015.09.026.

    ZHANG F, REN C X, TU P, et al. Oil gas explosion suppression by super fine powder [J]. Fire Science and Technology, 2015, 34(9): 1214–1217. DOI: 10.3969/j.issn.1009-0029.2015.09.026.
    [22]
    杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [23]
    蒋新生, 魏树旺, 何标, 等. 不同位置分支管道对油气爆炸强度的影响 [J]. 振动与冲击, 2017, 36(8): 231–236. DOI: 10.13465/j.cnki.jvs.2017.08.036.

    JIANG X S, WEI S W, HE B, et al. Effect on explosion intensity of gasoline-air mixture in a pipe containing different positions of branch [J]. Journal of Vibration and Shock, 2017, 36(8): 231–236. DOI: 10.13465/j.cnki.jvs.2017.08.036.
    [24]
    CUI Y Q, WANG Z R, JIANG J C, et al. Size effect on explosion intensity of methane-air mixture in spherical vessels and pipes [J]. Procedia Engineering, 2012, 45: 483–488. DOI: 10.1016/j.proeng.2012.08.190.
    [25]
    尹旺华, 毕明树, 丁信伟, 等. 障碍物对开敞空间蒸气云爆炸强度的加强作用 [J]. 石油化工设备, 2003, 32(1): 38–41. DOI: 10.3969/j.issn.1000-7466.2003.01.014.

    YIN W H, BI M S, DING X W, et al. Enhancement effection of obstacles for the power of UVCEs [J]. Petro-Chemical Equipment, 2003, 32(1): 38–41. DOI: 10.3969/j.issn.1000-7466.2003.01.014.
    [26]
    马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. DOI: 10.11858/gywlxb.20190803.
    [27]
    JIA J Z, CHEN Y N, CHE G B, et al. Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks [J]. Scientific Reports, 2021, 11(1): 21204. DOI: 10.1038/s41598-021-00722-8.
    [28]
    TRAN M V, SCRIBANO G, CHONG C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2018, 43(16): 8152–8160. DOI: 10.1016/j.ijhydene.2018.03.077.
    [29]
    邓军, 马晓峰, 商铁林, 等. 多元可燃气体爆炸压力峰值的数值模拟 [J]. 煤矿安全, 2014, 45(4): 13–16,20. DOI: 10.13347/j.cnki.mkaq.2014.04.004.

    DENG J, MA X F, SHANG T L, et al. Numerical simulation of peak pressure for multiple combustible gase [J]. Safety in Coal Mines, 2014, 45(4): 13–16,20. DOI: 10.13347/j.cnki.mkaq.2014.04.004.
    [30]
    贾宝山, 李春苗, 胡如霞, 等. CO、H2混合气体对瓦斯爆炸的协同作用机理研究 [J]. 世界科技研究与发展, 2016, 38(1): 35–39,58. DOI: 10.16507/j.issn.1006-6055.2016.01.008.

    JIA B S, LI C M, HU R X, et al. Study on synergistic effect mechanism of CO, H2 mixed gas on methane explosion [J]. World Sci-Tech R & D, 2016, 38(1): 35–39,58. DOI: 10.16507/j.issn.1006-6055.2016.01.008.
    [31]
    LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
    [32]
    CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 607–613. DOI: 10.1016/j.jlp.2009.05.001.
    [33]
    张春燕, 陶刚, 涂善东, 等. 低压氢气-空气混合物爆炸试验研究及数值模拟 [J]. 中国安全科学学报, 2018, 28(2): 87–92. DOI: 10.16265/j.cnki.issn1003-3033.2018.02.015.

    ZHANG C Y, TAO G, TU S D, et al. Experimental study and numerical simulation of low-pressure hydrogen-air mixture explosion [J]. China Safety Science Journal, 2018, 28(2): 87–92. DOI: 10.16265/j.cnki.issn1003-3033.2018.02.015.
    [34]
    ZHANG Y, CAO W G, SHU C M, et al. Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel [J]. Fuel, 2020, 261: 116433. DOI: 10.1016/j.fuel.2019.116433.
    [35]
    高娜. 初始温度和初始压力对瓦斯爆炸特性的影响研究 [D]. 南京: 南京理工大学, 2016.

    GAO N. Study on influence of initial temperature and pressure on gas explosion characteristics [D]. Nanjing: Nanjing University of Science & Technology, 2016.
    [36]
    王振兴, 王洋, 韩东洋, 等. 氢气对瓦斯爆炸化学动力学行为影响研究 [J]. 煤炭与化工, 2022, 45(9): 140–145. DOI: 10.19286/j.cnki.cci.2022.09.038.

    WANG Z X, WANG Y, HAN D Y, et al. Study on the influence of hydrogen on chemical kinetic behavior of gas explosion [J]. Coal and Chemical Industry, 2022, 45(9): 140–145. DOI: 10.19286/j.cnki.cci.2022.09.038.
    [37]
    迟明华, 蒋宏业, 吕超, 等. 输气管道高后果区蒸气云爆炸超压预测方法探究 [J]. 中国安全生产科学技术, 2023, 19(4): 121–127. DOI: 10.11731/j.issn.1673-193x.2023.04.017.

    CHI M H, JIANG H Y, LYU C, et al. Study on overpressure prediction method of vapor cloud explosion in high-consequence area of gas pipeline [J]. Journal of Safety Science and Technology, 2023, 19(4): 121–127. DOI: 10.11731/j.issn.1673-193x.2023.04.017.
    [38]
    仇锐来. 点火能量对瓦斯爆炸火焰传播速度的影响 [J]. 煤炭科学技术, 2011, 39(3): 52–55. DOI: 10.13199/j.cst.2011.03.57.qiurl.023.

    QIU R L. Ignition energy influenced to travel speed of gas explosion flame [J]. Coal Science and Technology, 2011, 39(3): 52–55. DOI: 10.13199/j.cst.2011.03.57.qiurl.023.
    [39]
    王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响 [J]. 中南大学学报(自然科学版), 2022, 53(2): 433–442. DOI: 10.11817/j.issn.1672-7207.2022.02.008.

    WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433–442. DOI: 10.11817/j.issn.1672-7207.2022.02.008.
    [40]
    YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536. DOI: 10.1080/15567036.2023.2205357.
    [41]
    VU T M, PARK J, KIM J S, et al. Experimental study on cellular instabilities in hydrocarbon/hydrogen/carbon monoxide-air premixed flames [J]. International Journal of Hydrogen Energy, 2011, 36(11): 6914–6924. DOI: 10.1016/j.ijhydene.2011.02.085.
    [42]
    OKAFOR E C, HAYAKAWA A, NAGANO Y, et al. Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air [J]. International Journal of Hydrogen Energy, 2014, 39(5): 2409–2417. DOI: 10.1016/j.ijhydene.2013.11.128.
    [43]
    朱红钧, 李佳男, 陈俊文, 等. 混氢天然气管道放空自燃过程数值模拟分析 [J]. 天然气工业, 2023, 43(9): 149–161. DOI: 10.3787/j.issn.1000-0976.2023.09.015.

    ZHU H J, LI J N, CHEN J W, et al. Numerical simulation analysis of the spontaneous combustion process during the venting of hydrogen-mixed natural gas line pipes [J]. Natural Gas Industry, 2023, 43(9): 149–161. DOI: 10.3787/j.issn.1000-0976.2023.09.015.
    [44]
    喻健良, 李通征, 闫兴清, 等. 贫燃条件下氢气比例对甲烷/氢气预混气火焰传播的影响 [J]. 安全与环境学报, 2022, 22(5): 2366–2371. DOI: 10.13637/j.issn.1009-6094.2021.0788.

    YU J L, LI T Z, YAN X Q, et al. Effect of hydrogen ratio on flame propagation of CH4-H2 premixed gas under fuel-lean conditions [J]. Journal of Safety and Environment, 2022, 22(5): 2366–2371. DOI: 10.13637/j.issn.1009-6094.2021.0788.
    [45]
    GUO L, ZHAI M, XU S J, et al. Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space [J]. International Journal of Hydrogen Energy, 2022, 47(44): 19319–19337. DOI: 10.1016/j.ijhydene.2022.04.091.
    [46]
    ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3871–3884. DOI: 10.1016/j.ijhydene.2018.01.045.
    [47]
    KIM W K, MOGI T, DOBASHI R. Fundamental study on accidental explosion behavior of hydrogen-air mixtures in an open space [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8024–8029. DOI: 10.1016/j.ijhydene.2013.03.101.
    [48]
    YU Z J, CHEN S S, GU Y, et al. Premixed flame propagation of methane/carbon monoxide/air in a closed tube with an obstacle [J]. Combustion Science and Technology, 2021, 193(15): 2724–2740. DOI: 10.1080/00102202.2020.1758077.
    [49]
    庞磊, 胡倩然, 马菲菲, 等. 泄爆面特征参数对天然气爆炸超压峰值的影响规律 [J]. 中国安全生产科学技术, 2020, 16(4): 126–131. DOI: 10.11731/j.issn.1673-193x.2020.04.020.

    PANG L, HU Q R, MA F F, et al. Effect of vent characteristic parameters on overpressure peaks of natural gas explosion [J]. Journal of Safety Science and Technology, 2020, 16(4): 126–131. DOI: 10.11731/j.issn.1673-193x.2020.04.020.
    [50]
    孙松, 王明洋, 高康华, 等. 大尺度泄爆构件对室内爆燃压力影响的实验研究 [J]. 爆炸与冲击, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.

    SUN S, WANG M Y, GAO K H, et al. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure [J]. Explosion and Shock Waves, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.
    [51]
    吕鹏飞, 朱澍成, 刘开沅, 等. 水平管道泄爆面开启压力对甲烷爆燃压力的影响 [J]. 中国安全生产科学技术, 2022, 18(7): 157–163. DOI: 10.11731/j.issn.1673-193x.2022.07.023.

    LYU P F, ZHU S C, LIU K Y, et al. Influence of venting surface opening pressure on methane deflagration pressure in horizontal pipe [J]. Journal of Safety Science and Technology, 2022, 18(7): 157–163. DOI: 10.11731/j.issn.1673-193x.2022.07.023.
    [52]
    陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.

    CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
    [53]
    QIU Y Y, XING H D, SUN S, et al. Experimental study of the effects of vent area and ignition position on internal and external pressure characteristics of venting explosion [J]. Fuel, 2021, 300: 120935. DOI: 10.1016/j.fuel.2021.120935.
    [54]
    郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.

    HAO T T, WANG C J, YAN W J, et al. Structural dynamical characteristics induced by vented hydrogen explosion [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
    [55]
    田雷, 毕海普. 工业弯管泄爆位置对爆炸压力的影响规律研究 [J]. 消防科学与技术, 2023, 42(11): 1477–1482. DOI: 10.3969/j.issn.1009-0029.2023.11.005.

    TIAN L, BI H P. Study on the influence of explosion relief position on explosion pressure for industrial bend pipe [J]. Fire Science and Technology, 2023, 42(11): 1477–1482. DOI: 10.3969/j.issn.1009-0029.2023.11.005.
    [56]
    张庆武, 蒋军成, 喻源, 等. 泄爆导管对球形容器内气体爆炸泄放过程影响的试验 [J]. 安全与环境学报, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.

    ZHANG Q W, JIANG J C, YU Y, et al. Experimental study over the effect of the relief duct on the venting of gas explosion in a spherical vessel [J]. Journal of Safety and Environment, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
    [57]
    TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169–181. DOI: 10.1016/j.jlp.2015.04.014.
    [58]
    CAO Y, LI B, XIE L F, et al. Experimental and numerical study on pressure dynamic and venting characteristic of methane-air explosion in the tube with effect of methane concentration and vent burst pressure [J]. Fuel, 2022, 316: 123311. DOI: 10.1016/j.fuel.2022.123311.
    [59]
    CHEN Y, YUAN D C, GUO J, et al. Research on mechanism and influence factors of the overpressure development in vented hydrogen deflagrations based on numerical simulation [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22681–22690. DOI: 10.1016/j.ijhydene.2019.03.200.
    [60]
    CHEN Y, LI Y, LI Z T, et al. Effect of vent area, vent location and number of vents on vented hydrogen deflagrations in a 27 m3 chamber [J]. International Journal of Hydrogen Energy, 2020, 45(55): 31268–31277. DOI: 10.1016/j.ijhydene.2020.08.032.
    [61]
    路长, 李明月, 郭洪江, 等. 非对称泄爆条件下甲烷爆炸双向传播特性的研究 [J]. 火工品, 2024(3): 91–96. DOI: 10.3969/j.issn.1003-1480.2024.03.015.

    LU C, LI M Y, GUO H J, et al. Study on the bidirectional propagation characteristics of methane explosion under asymmetric venting condition [J]. Initiators & Pyrotechnics, 2024(3): 91–96. DOI: 10.3969/j.issn.1003-1480.2024.03.015.
    [62]
    姜孝海, 范宝春, 叶经方, 等. 泄爆过程中二次爆炸的动力学机理研究 [J]. 力学学报, 2005, 37(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.

    JIANG X H, FAN B C, YE J F, et al. Dynamics in external secondary explosion during venting [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.
    [63]
    张嘉玮. 掺氢预混燃气燃烧爆炸特性及密闭空间泄爆仿真研究 [D]. 镇江: 江苏科技大学, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099.

    ZHANG J W. Simulation study on combustion and explosion characteristics of hydrogen-doped premixed gas and confined space explosion release [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099.
    [64]
    时静洁, 赵薇, 陈小林, 等. 泄爆口参数对氢气火焰传播过程影响的数值模拟 [J]. 中国安全生产科学技术, 2022, 18(7): 178–186. DOI: 10.11731/j.issn.1673-193x.2022.07.026.

    SHI J J, ZHAO W, CHEN X L, et al. Numerical simulation on influence of explosion vent parameters on flame propagation process of hydrogen [J]. Journal of Safety Science and Technology, 2022, 18(7): 178–186. DOI: 10.11731/j.issn.1673-193x.2022.07.026.
    [65]
    宋双林, 刘磊, 田富超, 等. 不同泄爆位置对甲烷/空气爆炸特性的影响 [J]. 煤矿安全, 2023, 54(11): 48–54. DOI: 10.13347/j.cnki.mkaq.2023.11.009.

    SONG S L, LIU L, TIAN F C, et al. Influence of different explosion venting positions on methane/air explosion characteristics [J]. Safety in Coal Mines, 2023, 54(11): 48–54. DOI: 10.13347/j.cnki.mkaq.2023.11.009.
    [66]
    钟委, 蒋雨阳, 韩宁, 等. 泄爆夹层内障碍物对泄爆效果影响的数值模拟研究 [J]. 中国安全生产科学技术, 2022, 18(12): 162–168. DOI: 10.11731/j.issn.1673-193x.2022.12.023.

    ZHONG W, JIANG Y Y, HAN N, et al. Numerical simulation on influence of obstacle in explosion-venting interlayer on explosion-venting effect [J]. Journal of Safety Science and Technology, 2022, 18(12): 162–168. DOI: 10.11731/j.issn.1673-193x.2022.12.023.
    [67]
    唐泽斯, 郭进, 张苏, 等. 甲烷-空气预混气体泄爆作用下容器振动响应特性 [J]. 福州大学学报 (自然科学版), 2020, 48(2): 263–268. DOI: 10.7631/issn.1000-2243.19411.

    TANG Z S, GUO J, ZHANG S, et al. Analysis of vibration response characteristics of explosive vessels during methane-air mixtures explosion [J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(2): 263–268. DOI: 10.7631/issn.1000-2243.19411.
    [68]
    GUO J, WANG C J, LI Q, et al. Effect of the vent burst pressure on explosion venting of rich methane-air mixtures in a cylindrical vessel [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 82–88. DOI: 10.1016/j.jlp.2015.12.006.
    [69]
    陈先锋, 张椿城, 李毅, 等. 刚/柔性障碍物对甲烷/空气预混气体泄爆动力学的影响 [J]. 安全与环境学报, 2023, 23(4): 1101–1107. DOI: 10.13637/j.issn.1009-6094.2022.0073.

    CHEN X F, ZHANG C C, LI Y, et al. Effect of different types of obstacles on venting dynamics of methane/air premixed gas [J]. Journal of Safety and Environment, 2023, 23(4): 1101–1107. DOI: 10.13637/j.issn.1009-6094.2022.0073.
    [70]
    高伟, 高轩能. 内爆炸下单层网壳的破坏模式和泄爆阀值研究 [J]. 振动与冲击, 2023, 42(22): 220–229. DOI: 10.13465/j.cnki.jvs.2023.22.025.

    GAO W, GAO X N. Failure modes and the explosion venting threshold of a single-layer reticulated shell under internal explosion [J]. Journal of Vibration and Shock, 2023, 42(22): 220–229. DOI: 10.13465/j.cnki.jvs.2023.22.025.
    [71]
    韩晓琦, 吴宙遨, 钟圣俊, 等. 爆炸泄压装置型式试验和泄爆效率计算 [J]. 电气防爆, 2023(3): 22–26. DOI: 10.14023/j.cnki.dqfb.2023.03.007.

    HAN X Q, WU Z A, ZHONG S J, et al. Type test and venting efficiency of explosion venting device [J]. Electric Explosion Protection, 2023(3): 22–26. DOI: 10.14023/j.cnki.dqfb.2023.03.007.
    [72]
    金友平, 帅健, 王文想, 等. 基于重大事故场景的受限空间内燃气泄漏情景模拟及泄爆优化研究 [J]. 高压物理学报, 2023, 37(6): 065201. DOI: 10.11858/gywlxb.20230658.

    JIN Y P, SHUAI J, WANG W X, et al. Leakage characteristics of flammable gas in confined space and the optimum design of explosion venting: numerical simulation on basis of the major accident [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065201. DOI: 10.11858/gywlxb.20230658.
    [73]
    崔东明, 杜志敏. 泄爆过程中外部爆炸现象的实验研究 [J]. 力学学报, 2006, 38(3): 371–380. DOI: 10.3321/j.issn:0459-1879.2006.03.012.

    CUI D M, DU Z M. Experimental studies on external explosions during venting explosions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 371–380. DOI: 10.3321/j.issn:0459-1879.2006.03.012.
    [74]
    KODAKOGLU F, FARAHANI H F, RANGWALA A S, et al. Dynamics of explosion venting in a compartment with methane-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104230. DOI: 10.1016/j.jlp.2020.104230.
    [75]
    LUO X J, WANG C J, RUI S C, et al. Effects of ignition location, obstacles, and vent location on the vented hydrogen-air deflagrations with low vent burst pressure in a 20-foot container [J]. Fuel, 2020, 280: 118677. DOI: 10.1016/j.fuel.2020.118677.
    [76]
    耿继辉, 李鸿志. 密闭容器泄爆过程内外场数值计算 [C]//第十届全国激波与激波管学术讨论会论文集. 黄山: 中国力学学会直属激波与激波管专业组, 中国科学技术大学力学和机械工程系, 中国科学院力学所高温气体动力学重点实验室, 2002: 5.
    [77]
    WANG Y X, LIAN Z, ZHANG Q. Effect of ignition location and vent on hazards of indoor liquefied petroleum gas explosion [J]. Combustion Science and Technology, 2017, 189(4): 698–716. DOI: 10.1080/00102202.2016.1246442.
    [78]
    陈晔, 李毅, 李紫婷, 等. 受限空间氢泄爆外部超压特性研究 [J]. 消防科学与技术, 2022, 41(3): 310–315. DOI: 10.3969/j.issn.1009-0029.2022.03.005.

    CHEN Y, LI Y, LI Z T, et al. Study on the characteristics of external overpressure induced by vented hydrogen deflagrations [J]. Fire Science and Technology, 2022, 41(3): 310–315. DOI: 10.3969/j.issn.1009-0029.2022.03.005.
    [79]
    SUN S, WANG M Y, QIU Y Y, et al. Effect of a hinged rotating vent cover on a vented explosion [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 186–193. DOI: 10.1016/j.jlp.2018.12.002.
    [80]
    姜孝海, 范宝春, 叶经方. 泄爆诱导的湍流、旋涡和外部爆炸 [J]. 应用数学和力学, 2004, 25(12): 1271–1277. DOI: 10.3321/j.issn:1000-0887.2004.12.008.

    JIANG X H, FAN B C, YE J F. Turbulence, vortex and external explosion induced by venting [J]. Applied Mathematics and Mechanics, 2004, 25(12): 1271–1277. DOI: 10.3321/j.issn:1000-0887.2004.12.008.
    [81]
    范宝春, 姜孝海. 高压泄爆导致的二次爆炸 [J]. 爆炸与冲击, 2005, 25(1): 11–16. DOI: 10.11883/1001-1455(2005)01-0011-06.

    FAN B C, JIANG X H. Secondary explosion induced by vented explosion [J]. Explosion and Shock Waves, 2005, 25(1): 11–16. DOI: 10.11883/1001-1455(2005)01-0011-06.
    [82]
    姜孝海, 范宝春, 叶经方. 泄爆外流场特性的试验研究 [J]. 实验力学, 2005, 20(2): 171–178. DOI: 10.3969/j.issn.1001-4888.2005.02.003.

    JIANG X H, FAN B C, YE J F. Experimental investigations on external flow field in explosion venting [J]. Journal of Experimental Mechanics, 2005, 20(2): 171–178. DOI: 10.3969/j.issn.1001-4888.2005.02.003.
    [83]
    叶经方, 姜孝海, 贾正望, 等. 泄爆诱导二次爆炸的实验研究 [J]. 爆炸与冲击, 2004, 24(4): 356–362. DOI: 10.11883/1001-1455(2004)04-0356-7.

    YE J F, JIANG X H, JIA Z W, et al. Experimental investigations of external second-explosion induced by vented explosion [J]. Explosion and Shock Waves, 2004, 24(4): 356–362. DOI: 10.11883/1001-1455(2004)04-0356-7.
    [84]
    PROUST C, LEPRETTE E. The dynamics of vented gas explosions [J]. Process Safety Progress, 2010, 29(3): 231–235. DOI: 10.1002/prs.10368.
    [85]
    马秋菊, 邵俊程, 万孟赛, 等. 点火位置对容器外部二次爆炸影响研究 [J]. 中国安全科学学报, 2021, 31(9): 90–98. DOI: 10.16265/j.cnki.issn1003-3033.2021.09.013.

    MA Q J, SHAO J C, WAN M S, et al. Impacts of ignition position on secondary explosion outside vessels [J]. China Safety Science Journal, 2021, 31(9): 90–98. DOI: 10.16265/j.cnki.issn1003-3033.2021.09.013.
    [86]
    MA Q J, HE Y, GUO Y H, et al. Research on the effect of the vent area on the external deflagration process during the explosion vent [J]. Fuel, 2022, 329: 125440. DOI: 10.1016/j.fuel.2022.125440.
    [87]
    WANG C H, GUO J, WANG H Z, et al. Duct-vented explosion of stoichiometric hydrogen/methane/air mixtures at various hydrogen ratios [J]. Fuel, 2023, 333: 126376. DOI: 10.1016/j.fuel.2022.126376.
    [88]
    YANG F Q, GUO J, WANG C J, et al. Duct-vented hydrogen-air deflagrations: the effect of duct length and hydrogen concentration [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21142–21148. DOI: 10.1016/j.ijhydene.2018.09.074.
    [89]
    ZHANG S, TANG Z S, LI J L, et al. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen–air deflagrations in an end-vented duct with an obstacle [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100–26108. DOI: 10.1016/j.ijhydene.2019.08.057.
    [90]
    PANG L, HU Q R, ZHAO J J, et al. Numerical study of the effects of vent opening time on hydrogen explosions [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15689–15701. DOI: 10.1016/j.ijhydene.2019.04.175.
    [91]
    RUI S C, GUO J, LI G, et al. The effect of vent burst pressure on a vented hydrogen-air deflagration in a 1 m3 vessel [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21169–21176. DOI: 10.1016/j.ijhydene.2018.09.124.
    [92]
    杜志敏. 泄爆过程中二次爆炸等异常现象的实验研究 [D]. 南京: 南京理工大学, 2004.
    [93]
    李文炜, 郑建伟, 杜清. 某餐馆LPG泄漏一次闪爆二次爆炸事故的模拟分析 [J]. 中国化工装备, 2023, 25(2): 13–18. DOI: 10.3969/j.issn.1671-0525.2023.02.003.

    LI W W, ZHENG J W, DU Q. Simulation analysis on the explosions in a restaurant [J]. China Chemical Industry Equipment, 2023, 25(2): 13–18. DOI: 10.3969/j.issn.1671-0525.2023.02.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (78) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return