• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
MA Luyao, ZHANG Xianfeng, XIONG Wei, LIU Chuang, DENG Yuxuan, HOU Xianwei, . Theoretical analysis of the influence of pore collapse behavior on the shock compression characteristics of porous materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0502
Citation: MA Luyao, ZHANG Xianfeng, XIONG Wei, LIU Chuang, DENG Yuxuan, HOU Xianwei, . Theoretical analysis of the influence of pore collapse behavior on the shock compression characteristics of porous materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0502

Theoretical analysis of the influence of pore collapse behavior on the shock compression characteristics of porous materials

doi: 10.11883/bzycj-2024-0502
  • Available Online: 2025-03-05
  • Porous materials are accompanied by pore collapse behavior during impact compression. Based on the shock wave structure observed in experiments carried out by predecessors, the theoretically analysis of the relationship between the shock wave formation process and pore collapse behavior of porous materials is made. Firstly, considering the compression curve characteristics of porous materials and the overtaking of shock wave, it is proposed that the shock wave structure of porous materials has three modes: low pressure single wave mode, double shock wave mode and high pressure single wave mode. These different shock wave modes are mainly caused by the influence of elastic-plastic mechanical behavior in pore collapse on the compression curve of porous materials. Furthermore, combined with the Wu-Jing equation of state, the calculation method of shock compression characteristics compatible with different shock wave modes is developed. The relationship between the Hugoniot Curve of porous material and dense material is established, and the calculation equation of impact specific volume compatible with single shock wave mode is obtained, which can directly calculate the critical specific volume without approximate conditions. In addition, the equation of pore collapse established by Carroll is modified by taking the linear approximation of the variation of porosity with pressure in the elastic stage and the elastic-plastic stage, and considering the relationship between the stress of the matrix material and the macroscopic stress in the porous material. Based on the calculation model of shock compression characteristics considering pore collapse behavior, the Hugoniot data of the material are calculated, and the influence of pore collapse behavior on the shock compression characteristics of porous materials is discussed. The results show that the shock compression characteristics of the material are significantly affected by the pore collapse behavior at lower pressures, and the model in this paper can predict the shock wave parameters of porous materials more accurately.
  • loading
  • [1]
    余同希. 关于“多胞材料”和“点阵材料”的一点意见 [J]. 力学与实践, 2005, 27(3): 90. DOI: 10.6052/1000-0992-2004-387.

    YU T X. Some Comments on 'Cellular Materials' and 'Lattice Materials' [J]. Mechanics in Engineering, 2005, 27(3): 90. DOI: 10.6052/1000-0992-2004-387.
    [2]
    EVANS A G , HUTCHINSON J W , ASHBY M F . Multifunctionality of cellular metal systems[J]. Progress in Materials Science, 1998, 43(3): 171-221. DOI: 10.1016/S0079-6425(98)00004-8.
    [3]
    张锦明, 张合, 戴可人, 等. 多孔弹性复合材料研制及其吸能缓冲特性 [J]. 兵工学报, 2022(001): 043. DOI: 10.3969/j.issn.1000-1093.2022.01.017.

    ZHANG J M, ZHANG H, DAI K R, et al. Preparation of Elastic Porous Composite Material and Its Energy-absorption Characteristics [J]. Acta Armamentarii, 2022(001): 043. DOI: 10.3969/j.issn.1000-1093.2022.01.017.
    [4]
    李西军, 周显明, 经福谦. 一种多孔铁的高压声速和冲击熔化 [J]. 高压物理学报, 2001(02): 117–121. DOI: CNKI:SUN:GYWL.0.2001-02-006.

    LI X J, ZHOU X M, JING F Q. Sound Speed of A Kind Of Porous Iron at High Pressures [J]. Chinese Journal of High Pressure Physics, 2001(02): 117–121. DOI: CNKI:SUN:GYWL.0.2001-02-006.
    [5]
    MCQUEEN R G, MARSH S P. Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
    [6]
    OH K H, PERSSON P A. Equation of state for extrapolation of high‐pressure shock Hugoniot data [J]. Journal of Applied Physics, 1989, 65(10): 3852–3856. DOI: 10.1063/1.343434.
    [7]
    QIANG W, FUQIAN J. Thermodynamic equation of state and application to Hugoniot predictions for porous materials [J]. Journal of Applied Physics, 1996, 80(8): 4343–4349. DOI: 10.1063/1.363391.
    [8]
    李欣竹, 吴强. 一种体积物态方程物理基础的讨论 [J]. 高压物理学报, 2001, 15(2): 155–160. DOI: 10.11858/gywlxb.2001.02.014.

    LI X Z, WU Q. The Physic Base of The New Equation of State [J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 155–160. DOI: 10.11858/gywlxb.2001.02.014.
    [9]
    BOSHOFF M L, VILJOEN H J. Comparative study of analytical methods for Hugoniot curves of porous materials [J]. Journal of Applied Physics, 1999, 86(3): 1245–1254. DOI: 10.1063/1.370878.
    [10]
    GENG H Y, WU Q, TAN H, et al. Extension of the Wu-Jing equation of state for highly porous materials: Calculations to validate and compare the thermoelectron model [J]. Journal of Applied Physics, 2002, 92(10): 5917–5923. DOI: 10.1063/1.1516618.
    [11]
    耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示 [J]. 物理学报, 2001, 50(7): 2. DOI: 10.3321/j.issn:1000-3290.2001.07.027.

    GENG H Y, WU Q, TAN H. Statistical Parameter of Thermodynamic Equation of State [J]. Acta Physica Sinica., 2001, 50(7): 2. DOI: 10.3321/j.issn:1000-3290.2001.07.027.
    [12]
    ZHANG X F, QIAO L, SHI A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. Journal of Applied Physics, 2011, 110(1): 013506. DOI: 10.1063/1.3603018.
    [13]
    ZHOU Q, CHEN P, MA D, et al. A model used for Hugoniot prediction of material at high-temperature along isobaric path [J]. Journal of Applied Physics, 2013, 114(2): 023509. DOI: 10.1063/1.4813482.
    [14]
    WU B, WANG X, SUI H, et al. Shock compression of porous copper containing helium: Molecular dynamics simulations and theoretical model [J]. International Journal of Plasticity, 2024, 174: 103899. DOI: 10.1016/j.ijplas.2024.103899.
    [15]
    BOADE R R. Dynamic compression of porous tungsten [J]. Journal of Applied Physics, 1969, 40(9): 3781–3785. DOI: 10.1063/1.1658272.
    [16]
    BOADE R R. Principal Hugoniot, second-shock Hugoniot, and release behavior of pressed copper powder [J]. Journal of Applied Physics, 1970, 41(11): 4542–4551. DOI: 10.1063/1.1658494.
    [17]
    DOLGOBORODOV A, ROSTILOV T, ANANEV S, et al. Structure of Shock Wave in Nanoscale Porous Nickel at Pressures up to 7 GPa [J]. Materials, 2022, 15(23): 8501. DOI10.3390/ma15238501.
    [18]
    WANG Y G, HE H L, QI M L, et al. Time-resolved dynamic compaction and tensile fracture of low-porosity aluminum under impact loading [J]. Journal of Applied Physics, 2007(7): 102. DOI: 10.1063/1.2787160.
    [19]
    BONNAN S, HEREIL P L, COLLOMBET F. Experimental characterization of quasi static and shock wave behavior of porous aluminum [J]. Journal of Applied Physics, 1998, 83(11): 5741–5749. DOI: 10.1063/1.367430.
    [20]
    BODRENKO S I, KRYSANOV Y A, NOVIKOV S A. Propagation of shock waves in foamed polystyrene [J]. Journal of Applied Mechanics and Technical Physics, 1979, 20(6): 771–775. DOI: 10.1007/BF00908673.
    [21]
    OGORODNIKOV V A, IVANOV A G, ERUNOV S V, et al. Shock-wave deformation and fracture of zirconium dioxide ceramics of various fractional composition and porosity [J]. Combustion Explosion and Shock Waves, 2001, 37(6): 717–722. DOI: 10.1007/BF02673292.
    [22]
    蒋招绣. 多孔Pb(Zr_(0.95)Ti_(0.05))O_3铁电陶瓷的力学性能及失效行为研究[D]. 宁波大学, 97−99. DOI: CNKI:CDMD:1.1018.797492.
    [23]
    CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626-1636. DOI10.1063/1.1661372.
    [24]
    经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 1-200.
    [25]
    HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [26]
    JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
    [27]
    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [28]
    陆景德 , 张万甲, 张玉松. 2#纯铁和不锈钢的变形硬化效应[J]. 爆炸与冲击, 1984(2): 75–79.

    LU J D , ZHANG W J , ZHANG Y S. Deformation hardening effect of 2 # pure iron and stainless steel [J]. Explosion and Shock Waves, 1984(2): 75–79.
    [29]
    BUTCHER B M, KARNES C H. Dynamic compaction of porous iron [J]. Journal of Applied Physics, 1969, 40(7): 2967–2976. DOI: 10.1063/1.1658109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (149) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return