• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LI Tianyu, FENG Xiaowei, LIU Yaolu, HE Liling, ZHAO Haochuan, WANG Shouqian, NIE Yuan. Damage characteristics of T800 CFRP laminates under typical impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0505
Citation: LI Tianyu, FENG Xiaowei, LIU Yaolu, HE Liling, ZHAO Haochuan, WANG Shouqian, NIE Yuan. Damage characteristics of T800 CFRP laminates under typical impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0505

Damage characteristics of T800 CFRP laminates under typical impacts

doi: 10.11883/bzycj-2024-0505
  • Received Date: 2024-12-25
  • Rev Recd Date: 2025-10-14
  • Available Online: 2025-10-16
  • In response to the research demand for the impact resistance of carbon fiber-reinforced polymer (CFRP) laminates commonly used in aircraft, spherical fragment penetration and static blast tests were conducted on T800/3200 CFRP laminates, with CT scanning technology and damage assessment theories employed for further analysis. The damage characteristics and performance of T800/3200 CFRP laminates under two typical loads-fragment penetration and explosive shock waves-were investigated and compared with 2024-T3 aluminum, a material widely used in the aviation manufacturing industry. Two control groups were established: tungsten fragments impacting aerospace aluminum plates and tungsten steel fragments striking CFRP laminates. Impact velocities and residual velocities were precisely measured using high-speed photography. During fragment penetration tests, relationships among incident velocity, residual velocity, and energy absorption were analyzed based on the Recht–Ipson ballistic limit model. The internal damage morphology of CFRP targets was examined in detail using high-resolution CT scanning technology to characterize delamination patterns and progressive failure across different depths and plies. In blast tests, the damage morphology and maximum deflection of target plates were systematically observed and recorded. The blast resistance of CFRP laminates and aluminum plates was quantitatively compared using advanced mathematical methods incorporating boundary condition equivalence and overpressure equivalence principles to ensure a fair and accurate comparison. The results show that, after spherical fragment penetration, the T800/3200 CFRP laminate generates a delamination damage zone resembling a truncated cone, with the volume of the cone decreasing as the penetration velocity of fragments increases. The T800/3200 CFRP laminate exhibits inferior performance against fragment penetration compared with aerospace aluminum but offers significantly enhanced blast resistance. This characteristic makes it more effective in maintaining structural safety and aerodynamic stability during flight missions under explosive threats. The findings provide theoretical and empirical support for improving the safety and reliability of aerospace vehicles through optimized material selection and structural design.
  • loading
  • [1]
    吕淑扬, 郑凯, 赵英男, 等. 碳纤维增强复合材料在航空航天领域的应用 [J]. 聚酯工业, 2024, 37(3): 71–73. DOI: 10.3969/j.issn.1008-8261.2024.03.022.

    LV S Y, ZHENG K, ZHAO Y N, et al. Application of carbon fiber reinforced composite materials in the aerospace field [J]. Polyester Industry, 2024, 37(3): 71–73. DOI: 10.3969/j.issn.1008-8261.2024.03.022.
    [2]
    郑学搏. 飞机结构中碳纤维复合材料的应用研究 [J]. 中国设备工程, 2023(7): 92–94. DOI: 10.3969/j.issn.1671-0711.2023.07.039.

    ZHENG X B. Application of carbon fiber reinforced composite materials in aircraft structures [J]. China Plant Engineering, 2023(7): 92–94. DOI: 10.3969/j.issn.1671-0711.2023.07.039.
    [3]
    贺福, 孙微. 碳纤维复合材料在大飞机上的应用 [J]. 高科技纤维与应用, 2007, 32(6): 5–8,17. DOI: 10.3969/j.issn.1007-9815.2007.06.002.

    HE F, SUN W. The application of carbon fiber composite materials in giant plane [J]. Hi-Tech Fiber & Application, 2007, 32(6): 5–8,17. DOI: 10.3969/j.issn.1007-9815.2007.06.002.
    [4]
    钱鑫, 王雪飞, 马洪波, 等. 国内外PAN基高模量碳纤维的技术现状与研究进展 [J]. 合成纤维工业, 2021, 44(5): 58–64. DOI: 10.3969/j.issn.1001-0041.2021.05.012.

    QIAN X, WANG X F, MA H B, et al. Technology status and research progress of PAN-based high-modulus carbon fibers in China and abroad [J]. China Synthetic Fiber Industry, 2021, 44(5): 58–64. DOI: 10.3969/j.issn.1001-0041.2021.05.012.
    [5]
    冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.

    FENG X W, LU Y G, LI Y Z. Damage assessment method of aircraft targets under blast wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.
    [6]
    梅志伟, 余慧敏, 刘小磊, 等. 国外巡飞防空武器现状及发展研究 [J]. 空天防御, 2024, 7(3): 40–45. DOI: 10.3969/j.issn.2096-4641.2024.03.005.

    MEI Z W, YU H M, LIU X L, et al. Research on the current status and development of foreign patrol air defense weapons [J]. Air & Space Defense, 2024, 7(3): 40–45. DOI: 10.3969/j.issn.2096-4641.2024.03.005.
    [7]
    洪诗婷. T300碳纤维的表面处理及力学性能研究 [D]. 上海: 东华大学, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000115.

    HONG S T. Surface treatment and mechanical properties of T300 carbon fiber [D]. Shanghai: Donghua University, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000115.
    [8]
    刘亮, 颜会全, 王芬, 等. 国内外T700级碳纤维及其复合材料的性能 [J]. 高科技纤维与应用, 2019, 44(6): 28–32. DOI: 10.3969/j.issn.1007-9815.2019.06.005.

    LIU L, YAN H Q, WANG F, et al. Study on properties of T700 grade carbon fiber and its composite materials at home and abroad [J]. Hi-Tech Fiber Application, 2019, 44(6): 28–32. DOI: 10.3969/j.issn.1007-9815.2019.06.005.
    [9]
    CHEN W M, YU Y H, LI P, et al. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites [J]. Composites Science and Technology, 2007, 67(11/12): 2261–2270. DOI: 10.1016/j.compscitech.2007.01.026.
    [10]
    NETTLES A T, GUIN W E, MAVO J P, et al. Damage tolerance comparison of IM7/8552 and T1100/3960 carbon fiber/epoxy sandwich structure in support of the space launch system payload adapter fitting: NASA/TM-20230005376 [R]. Huntsville: NASA, 2023.
    [11]
    NAIK N K, SHRIRAO P. Composite structures under ballistic impact [J]. Composite Structures, 2004, 66(1/2/3/4): 579–590. DOI: 10.1016/j.compstruct.2004.05.006.
    [12]
    BRESCIANI L M, MANES A, GIGLIO M. An analytical model for ballistic impacts against plain-woven fabrics with a polymeric matrix [J]. International Journal of Impact Engineering, 2015, 78: 138–149. DOI: 10.1016/j.ijimpeng.2015.01.001.
    [13]
    NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of Ultra High molecular weight polyethylene composite [J]. International Journal of Impact Engineering, 2015, 75: 174–183. DOI: 10.1016/j.ijimpeng.2014.07.008.
    [14]
    董高雄, 毕莹, 李向东. 球形破片侵彻碳纤维复合材料层合板的理论和试验研究 [J]. 振动与冲击, 2024, 43(17): 100–109. DOI: 10.13465/j.cnki.jvs.2024.17.012.

    DONG G X, BI Y, LI X D. Theoretical and test investigation of spherical fragments penetrating carbon fiber composite laminates [J]. Journal of Vibration and Shock, 2024, 43(17): 100–109. DOI: 10.13465/j.cnki.jvs.2024.17.012.
    [15]
    丛超男, 朱文清, 刘俊杰, 等. 纤维增强复合材料弹道极限速度理论与数值模型研究进展 [J]. 科学通报, 2024, 69(22): 3238–3251. DOI: 10.1360/TB-2024-0399.

    CONG C N, ZHU W Q, LIU J J, et al. Advances in analytical and numerical models for ballistic limits of fiber-reinforced composites [J]. Chinese Science Bulletin, 2024, 69(22): 3238–3251. DOI: 10.1360/TB-2024-0399.
    [16]
    邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性 [J]. 复合材料学报, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.

    DENG Y F, YUAN J J, XU J X. Penetration characteristics of woven composite laminates impacted by hemispherical-nosed projectiles at different angles [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.
    [17]
    王佳富. 低速冲击下的碳纤维增强复合材料层合板损伤特性研究 [D]. 长沙: 湖南大学, 2023. DOI: 10.27135/d.cnki.ghudu.2023.004323.

    WANG J F. Study on damage characteristics of carbon fiber reinforced composite laminates under low velocity impact [D]. Changsha: Hunan University, 2023. DOI: 10.27135/d.cnki.ghudu.2023.004323.
    [18]
    周俊杰, 王生楠. 复合材料层合板低速冲击渐进损伤模型 [J]. 西北工业大学学报, 2021, 39(1): 37–45. DOI: 10.1051/jnwpu/20213910037.

    ZHOU J J, WANG S N. A progressive damage model of composite laminates under low-velocity impact [J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 37–45. DOI: 10.1051/jnwpu/20213910037.
    [19]
    HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. DOI: 10.1115/1.3153664.
    [20]
    LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. DOI: 10.1016/j.ijimpeng.2014.12.008.
    [21]
    LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: A state-of-the-art [J]. International Materials Reviews, 2014, 59(3): 159–177. DOI: 10.1179/1743280413Y.0000000028.
    [22]
    COLES L A, TILTON C, ROY A, et al. Dynamic damage in woven carbon/epoxy composites due to air blast [J]. Procedia Structural Integrity, 2017, 6: 5–10. DOI: 10.1016/j.prostr.2017.11.002.
    [23]
    COLES L A, TILTON C, ROY A, et al. Dynamic fracture in carbon-fibre composites: air-blast loading [J]. Procedia Structural Integrity, 2016, 2: 417–421. DOI: 10.1016/j.prostr.2016.06.054.
    [24]
    解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板态响应数值分析方法 [J]. 应用数学和力学, 2017, 38(4): 410–420. DOI: 10.21656/1000-0887.370252.

    XIE J, LI H, ZHOU S T, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads [J]. Applied Mathematics and Mechanics, 2017, 38(4): 410–420. DOI: 10.21656/1000-0887.370252.
    [25]
    周逃林. 层合复合材料冰雹和硬物冲击损伤研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000345.

    ZHOU T L. Study on damage of composite laminate experienced impactions of hail and rigid impactor [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000345.
    [26]
    李厚伯. 冲击载荷作用下碳纤维增强复合材料层合板的动力学响应研究 [D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.000599.

    LI H B. Dynamic response of carbon fiber reinforced composite laminates according to impact load [D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.000599.
    [27]
    尚晓壮, 刘瑶璐, 冯晓伟, 等. 冰球和钨珠非正冲击下T800-CFRP层合板损伤特性的研究 [J]. 振动与冲击, 2024, 43(11): 135–147. DOI: 10.13465/j.cnki.jvs.2024.11.016.

    SHANG X Z, LIU Y L, FENG X W, et al. Damage characteristics of T800-CFRP laminates under non-normal impact of ice balls and tungsten beads [J]. Journal of Vibration and Shock, 2024, 43(11): 135–147. DOI: 10.13465/j.cnki.jvs.2024.11.016.
    [28]
    RECHT R F, IPSON T W. Ballistic Perforation Dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384. DOI: 10.1115/1.3636566.
    [29]
    卢涛. 碳纤维复合材料层合板动态力学性能及抗弹机理研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000701.

    LU T. Dynamic mechanical properties and anti-ballistic mechanism of carbon fiber composite laminates [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000701.
    [30]
    ABRATE S. Impact on laminated composite materials [J]. Applied Mechanics Reviews., 1991, 44(4): 155–190. DOI: 10.1115/1.3119500.
    [31]
    郑金国, 周书婷, 解江, 等. 爆炸载荷作用下2024-T3铝合金板动态响应试验研究 [J]. 装备制造技术, 2017(2): 127–130. DOI: 10.3969/j.issn.1672-545X.2017.02.038.

    ZHENG J G, ZHOU S T, XIE J, et al. Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load [J]. Equipment Manufacturing Technology, 2017(2): 127–130. DOI: 10.3969/j.issn.1672-545X.2017.02.038.
    [32]
    王树山. 终点效应学 [M]. 2版. 北京: 科学出版社, 2019.

    WANG S S. Terminal effects [M]. 2nd ed. Beijing: Science Press, 2019.
    [33]
    徐芝纶. 弹性力学(下册) [M]. 4版. 北京: 高等教育出版社, 2006.

    XU Z L. Elasticity (Vol II) [M]. 4th ed. Beijing: High Education Press, 2006.
    [34]
    钟阳, 李锐, 刘月梅. 四边固支矩形弹性薄板的精确解析解 [J]. 力学季刊, 2009, 30(2): 297–303. DOI: 10.15959/j.cnki.0254-0053.2009.02.010.

    ZHONG Y, LI R, LIU Y M. Exact analytic solution of rectangular thin plate with four edges clamped [J]. Chinese Quarterly of Mechanics, 2009, 30(2): 297–303. DOI: 10.15959/j.cnki.0254-0053.2009.02.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article Metrics

    Article views (195) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return