• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
SHOU Liefeng, ZHU Wenjun, LI Qinchao, MA Long, YAO Chengbao. Numerical schemes of intensive blast wave propagation in large scale complex enviroments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0511
Citation: SHOU Liefeng, ZHU Wenjun, LI Qinchao, MA Long, YAO Chengbao. Numerical schemes of intensive blast wave propagation in large scale complex enviroments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0511

Numerical schemes of intensive blast wave propagation in large scale complex enviroments

doi: 10.11883/bzycj-2024-0511
  • Received Date: 2024-12-30
  • Rev Recd Date: 2025-06-04
  • Available Online: 2025-05-26
  • A compressible multiphase flow numerical scheme, induced from the multi- component diffuse interface model with arbitrary number of materials, is established to simulate the interaction between distinct materials under extreme conditions. A robust, low dissipation and high efficiency reconstruction method, the MTBVD (muscl thinc boundary variation diminishing), is proposed with the aid of artificial intelligence technology, which can adaptively select the most suitable reconstruction method in the essential regions such as shock wave, contact discontinuity and material interface, and can achieve the minimum global numerical dissipation. Furthermore, it has a higher computational efficiency than the traditional BVD (boundary variation diminishing) scheme. The automatic geometric modeling and grid meshing based on global geographic information system, adaptive mesh refinement and large-scale parallel computing method are established to realize the whole numerical simulation of shock wave propagation in complex terrain and real urban environments. Our schemes allows for the effective simulation of intense blast wave scenarios on a large scale within intricate urban settings, employing billions of meshes, a pressure spectrum ranging from 103 Pa to 1015 Pa, and a minimum spacing size of 10 km. We have conducted multiple numerical simulations that demonstrate the propagation of blast waves through complex landscapes and urban areas, which corroborate our methodologies.
  • loading
  • [1]
    WANG X, REMOTIGUE M, ARBOLDUS Q, et al. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy [J]. Shock Waves, 2017, 27(3): 409–422. DOI: 10.1007/s00193-016-0694-4.
    [2]
    RATCLIFF A, RIGBY S, CLARKE S, et al. A review of blast loading in the urban environment [J]. Applied Sciences-Basel, 2023, 13(9): 5301. DOI: 10.3390/app13095301.
    [3]
    VALSAMOS G, LARCHER M, CASADEI F. Beirut explosion 2020: A case study for a large-scale urban blast simulation [J]. Safety Science, 2021, 137: 105181. DOI: 10.1016/j.ssci.2020.105181.
    [4]
    JIMENEZ C P, FICA M M, QUINTANA J D. Identification of geometrical design criteria for reducing the vulnerability of urban area configurations to blast effects [C]. COST Action C26 International Conference on Urban Habitat Constructions Under Catastrophic Events. 2010: 955-960.
    [5]
    DENNY J, LANGDON G, RIGBY S, et al. A numerical investigation of blast-structure interaction effects on primary blast injury risk and the suitability of existing injury prediction methods [J]. International Journal of Protective Structures, 2024, 15(1): 3–22. DOI: 10.1177/20414196231224218.
    [6]
    SWISDAK M. Simplified kingery airblast calculations [M]. USA: Naval Surface Warfare Center, 1994.
    [7]
    BRITT J, RANTA D, JOACHIM C. Shock user’s manual version 4.2 [M]. USA: BlastX Code, 2001.
    [8]
    HYDE D. Conwep: Application and fundamentals of protective design for conventional weapons [M]. USA: US Army Corps of Engineers, 1992.
    [9]
    SHI Y C, LIU S Z, LI Z X, et al. Review on quick safety assessment of building structures in complex urban environment after extreme explosion events [J]. International Journal of Protective Structures, 2023, 14(3): 438–458. DOI: 10.1177/20414196231172563.
    [10]
    FOUCHIER C, LABOUREUR D, YOUINOU L, et al. Experimental investigation of blast wave propagation in an urban environment [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 5–10. DOI: 10.1016/j.jlp.2017.05.003.
    [11]
    殷文骏, 童念雪, 程帅, 等. 爆炸驱动激波管冲击波压力参数研究 [J]. 现代应用物理, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.

    YIN W J, TONG N X, CHENG S, et al. Shock wave pressure parameters of blast-driven shock tube [J]. Modern Applied Physics, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.
    [12]
    张亮永, 卢强, 王同东, 等. 近地面爆源参数的贝叶斯声震联合反演方法 [J]. 现代应用物理, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.

    ZHANG L Y, LU Q, WANG T D, et al. Bayesian method for acoustic-seismic joint inversion of near-surface explosion parameters [J]. Modern Applied Physics, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.
    [13]
    王志凯, 梁永辉, 戴伯达, 等. 近自由液面聚能战斗部水下爆炸威力场 [J]. 现代应用物理, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.

    WANG Z K, LIANG Y H, DAI B D, et al. Underwater explosion power field of near-free surface shaped charge warhead [J]. Modern Applied Physics, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.
    [14]
    DRAZIN W. Blast propagation and damage in urban topographies [D]. UK: University of Cambridge, 2018. DOI: 10.17863/CAM.23456.
    [15]
    REMENNIKOV A. A review of methods for predicting bomb blast effects on buildings [J]. Journal of Battlefield Technology, 2003, 6(3): 5–10.
    [16]
    SMITH P D, ROSE T A. Blast wave propagation in city streets-an overview [J]. Structural Safety and Reliability, 2006, 8(1): 16–28. DOI: 10.1016/j.strusafe.2005.09.001.
    [17]
    HAO H, HAO Y, LI J, et al. Review of the current practices in blast resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1–31. DOI: 10.1177/1369433216653842.
    [18]
    BIRNBAUM N K, COWLER M S, ITOH M, et al. AUTODYN-an interactive non-linear dynamic analysis program for microcomputers through supercomputers [M]. Netherlands: Balkema, 1987.
    [19]
    CREPEAU J E, NEEDHAM C E. Verification and validation of SHAMRC for nonideal airblast (NIAB) phenomenology [R]. USA: Defense Threat Reduction Agency, 2010.
    [20]
    NOBLE C R, ANDERSON A T, BARTON N, et al. *ALE3D: An arbitrary lagrangian-eulerian multi-physics code* [R]. USA: Lawrence Livermore National Laboratory, 2017. DOI: 10.2172/1375584.
    [21]
    JEFFREY H, PETER V, TIMOTHY B. BlastFoam version 6.0 User Guide [M]. USA: BlastFoam Consortium, 2022.
    [22]
    KEVIN S, FABIEN P, SEBASTIEN L E, et al. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows [J]. Computer Physics Communications, 2020, 251: 107093. DOI: 10.1016/j.cpc.2019.107093.
    [23]
    FU M Y, LI R, LU T, et al. A hybrid fluid-solid interaction scheme combining the multi-component diffuse interface method and the material point method [J]. Communications in Computational Physics, 2022, 32(5): 23–49. DOI: 10.4208/cicp.OA-2022-0001.
    [24]
    CHEN L, LI R, YAO C B. An approximate solver for multi-medium Riemann problem with Mie-Gruneisen equations of state [J]. Research in the Mathematical Sciences, 2018, 5(3): 31–59. DOI: 10.1007/s40687-018-0151-3.
    [25]
    GUO Y H, LI R, YAO C B. A numerical method on Eulerian grids for two-phase compressible flow [J]. Advances in Applied Mathematics and Mechanics, 2016, 8(2): 187–212. DOI: 10.4208/aamm.2014.m697.
    [26]
    ZEIN A, HANTKE M, WARNECKE G. Modeling phase transition for compressible two-phase flows applied to meta stable liquids [J]. Journal of Computational Physics, 2010, 229(12): 2964–2998. DOI: 10.1016/j.jcp.2010.01.001.
    [27]
    SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 105–130. DOI: 10.1146/annurev-fluid-122316-050109.
    [28]
    BAER M, NUNZIATO J. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials [J]. Journal of Multiphase Flow, 1986, 12(5): 861–889. DOI: 10.1016/0301-9322(86)90017-0.
    [29]
    SAINSAULIEU L. Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver [J]. Journal of Computational Physics, 1995, 121(4): 1–28. DOI: 10.1006/jcph.1995.1201.
    [30]
    SAUREL R, PETITPAS F, BERRY R A. Simple and efficient relaxation methods for interfaces separating compressible fluids. Cavitating flows and shocks in multiphase mixture [J]. Journal of Computational Physics, 2009, 228(1): 1678–1712. DOI: 10.1016/j.jcp.2008.11.002.
    [31]
    SAUREL R, PETITPAS F. Modelling phase transition in metastable liquids: application to cavitating and flashing flows [J]. Journal of Fluid Mechanics, 2008, 607: 313–350. DOI: 10.1017/S0022112008002061.
    [32]
    PELANTI M, SHYUE K M. A mixture-energy-consistent six-equation two-phase numerical model for fluid with interfaces, cavitation and evaporation waves [J]. Journal of Computational Physics, 2014, 259: 331–357. DOI: 10.1016/j.jcp.2013.12.011.
    [33]
    PELANTI M, SHYUE K M. A numerical model for multiphase liquid-vapor gas flows with interfaces and cavitation [J]. International Journal of Multiphase Flow, 2019, 113: 208–230. DOI: 10.1016/j.ijmultiphaseflow.2018.10.012.
    [34]
    KAPILA A, MENIKOFF R, BDZIL J, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations [J]. Physics of Fluids, 2001, 13(9): 3002–3024. DOI: 10.1063/1.1398042.
    [35]
    ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(1): 577–616. DOI: 10.1006/jcph.2002.7143.
    [36]
    GARRICK D P, OWKES M, REGELE J D. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension [J]. Journal of Computational Physics, 2017, 339: 46–67. DOI: 10.1016/j.jcp.2017.03.012.
    [37]
    ZHANG J. A simple and effective five-equation two-phase numerical model for liquid-vapor phase transition in cavitating flows [J]. International Journal of Multiphase Flow, 2020, 132: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103348.
    [38]
    ABGRALL R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach [J]. Journal of Computational Physics, 1996, 125(1): 150–160. DOI: 10.1006/jcph.1996.0085.
    [39]
    JOHNSEN E, HAM F. Preventing numerical errors generated by interface capturing schemes in compressible multi-material flows [J]. Journal of Computational Physics, 2012, 231(4): 5705–5717. DOI: 10.1016/j.jcp.2012.04.043.
    [40]
    MOVAHED P, JOHNSEN E. A solution adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability [J]. Journal of Computational Physics, 2013, 239: 166–186. DOI: 10.1016/j.jcp.2012.12.007.
    [41]
    SCARDOVELLI R, ZALESKI S. Direct numerical simulation of free-surface and interfacial flow [J]. Annual Review of Fluid Mechanics, 1999, 31: 567–603. DOI: 10.1146/annurev.fluid.31.1.567.
    [42]
    NOH W F, WOODWARD P. SLIC (Simple line interface calculation) [C]// Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer, 1976: 330–340. DOI: 10.1007/BFb0019743.
    [43]
    SETHIAN J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169(2): 503–555. DOI: 10.1006/jcph.2000.6544.
    [44]
    SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114(1): 146–159. DOI: 10.1006/jcph.1994.1155.
    [45]
    AHN H T, SHASHKOV M. Multi-material interface reconstruction on generalized polyhedral meshes [J]. Journal of Computational Physics, 2007, 226(2): 2096–2132. DOI: 10.1016/j.jcp.2007.06.029.
    [46]
    DYADECHKO V, SHASHKOV D M. Reconstruction of multi-material interfaces from moment data [J]. Journal of Computational Physics, 2008, 227(11): 5361–5384. DOI: 10.1016/j.jcp.2008.01.041.
    [47]
    ANBARLOOEI H R, MAZAHERI K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(47): 3782–3794. DOI: 10.1016/j.cma.2009.08.013.
    [48]
    GLIMM J, GROVE J W, LI X L. Three-dimensional front tracking [J]. SIAM Journal on Scientific Computing, 1998, 19(3): 703–727. DOI: 10.1137/S1064827595293600.
    [49]
    TRYGGVASON G, BUNNER B, ESMAEELI A. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
    [50]
    HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1987, 71(2): 231–303. DOI: 10.1016/0021-9991(87)90031-3.
    [51]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439–471. DOI: 10.1016/0021-9991(88)90177-5.
    [52]
    JIANG J S, SHU C W. Efficient implementation of Weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
    [53]
    SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems [J]. SIAM Review, 2009, 51(1): 82–126. DOI: 10.1137/070679065.
    [54]
    SHUKLA R K, PANTANO C, FREUND J B. An interface capturing method for the simulation of multi-phase compressible flows [J]. Journal of Computational Physics, 2010, 229(10): 7411–7439. DOI: 10.1016/j.jcp.2010.06.025.
    [55]
    SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows [J]. Journal of Computational Physics, 2014, 276: 508–540. DOI: 10.1016/j.jcp.2014.07.038.
    [56]
    NGUYEN V T, PHAN T H, PARK W G. Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpening five-equation model [J]. International Journal of Multiphase Flow, 2021, 135: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103512.
    [57]
    TIWARI A, FREUND J B, PANTANO C. A diffuse interface model with immiscibility preservation [J]. Journal of Computational Physics, 2013, 252: 290–309. DOI: 10.1016/j.jcp.2013.06.018.
    [58]
    CHIAPOLINO A, SAUREL R, NKONGA B. Sharpening diffuse interfaces with compressible fluids on unstructured meshes [J]. Journal of Computational Physics, 2017, 340: 389–417. DOI: 10.1016/j.jcp.2017.03.056.
    [59]
    HEWITT E S. The Gibbs-Wilbraham phenomenon: An episode in fourier analysis [J]. Archive for History of Exact Sciences, 1979, 21: 129–160. DOI: 10.1007/BF00330404.
    [60]
    XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function [J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. DOI: 10.1002/fld.975.
    [61]
    XIAO F, CHEN L D. Revisit to the thinc scheme: A simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. DOI: 10.1016/j.jcp.2011.05.030.
    [62]
    XIE B, XIAO F. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature [J]. Journal of Computational Physics, 2017, 349: 415–440. DOI: 10.1016/j.jcp.2017.08.006.
    [63]
    CHENG L D, DENG X, XIE B, et al. Low-dissipation bvd schemes for single and multi-phase compressible flows on unstructured grids [J]. Journal of Computational Physics, 2021, 428: 109092. DOI: 10.1016/j.jcp.2020.109092.
    [64]
    DENG X, INABA S, XIE B, et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces [J]. Journal of Computational Physics, 2018, 371: 945–966. DOI: 10.1016/j.jcp.2018.05.038.
    [65]
    WAKIMURA H, TAKAGI S, XIAO F. Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing principle [J]. Computers & Fluids, 2022, 233: 105219. DOI: 10.1016/j.compfluid.2021.105219.
    [66]
    DENG X, SHIMIZU Y, XIAO F. A fifth-order shock capturing scheme with two stage boundary variation diminishing algorithm [J]. Journal of Computational Physics, 2019, 386: 323–349. DOI: 10.1016/j.jcp.2019.02.009.
    [67]
    HUANG M S, CHENG L D, YING W J. A structure-preserving reconstruction scheme for compressible single- and multi-phase flows based on artificial neural networks [J]. Journal of Computational Physics, 2024, 499: 112345. DOI: 10.1016/j.jcp.2023.112345.
    [68]
    LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. USA: Lawrence Radiation Laboratory, 1968. DOI: 10.2172/4783904.
    [69]
    李秦超, 姚成宝, 程帅, 等. 神经网络状态方程在强爆炸冲击波数值模拟中的应用 [J]. 爆炸与冲击, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.

    LI Q C, YAO C B, CHENG S, et al. Application of the neural network equation of state in numerical simulation of intense blast wave [J]. Explosion and Shock Waves, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.
    [70]
    GLASSTONE S, DOLAN P J. Effects of nuclear weapons [M]. USA: United States Department of Defense, 1977: 453–501.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (41) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return