| Citation: | SHOU Liefeng, ZHU Wenjun, LI Qinchao, MA Long, YAO Chengbao. Numerical schemes of intensive blast wave propagation in large scale complex enviroments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0511 |
| [1] |
WANG X, REMOTIGUE M, ARBOLDUS Q, et al. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy [J]. Shock Waves, 2017, 27(3): 409–422. DOI: 10.1007/s00193-016-0694-4.
|
| [2] |
RATCLIFF A, RIGBY S, CLARKE S, et al. A review of blast loading in the urban environment [J]. Applied Sciences-Basel, 2023, 13(9): 5301. DOI: 10.3390/app13095301.
|
| [3] |
VALSAMOS G, LARCHER M, CASADEI F. Beirut explosion 2020: A case study for a large-scale urban blast simulation [J]. Safety Science, 2021, 137: 105181. DOI: 10.1016/j.ssci.2020.105181.
|
| [4] |
JIMENEZ C P, FICA M M, QUINTANA J D. Identification of geometrical design criteria for reducing the vulnerability of urban area configurations to blast effects [C]. COST Action C26 International Conference on Urban Habitat Constructions Under Catastrophic Events. 2010: 955-960.
|
| [5] |
DENNY J, LANGDON G, RIGBY S, et al. A numerical investigation of blast-structure interaction effects on primary blast injury risk and the suitability of existing injury prediction methods [J]. International Journal of Protective Structures, 2024, 15(1): 3–22. DOI: 10.1177/20414196231224218.
|
| [6] |
SWISDAK M. Simplified kingery airblast calculations [M]. USA: Naval Surface Warfare Center, 1994.
|
| [7] |
BRITT J, RANTA D, JOACHIM C. Shock user’s manual version 4.2 [M]. USA: BlastX Code, 2001.
|
| [8] |
HYDE D. Conwep: Application and fundamentals of protective design for conventional weapons [M]. USA: US Army Corps of Engineers, 1992.
|
| [9] |
SHI Y C, LIU S Z, LI Z X, et al. Review on quick safety assessment of building structures in complex urban environment after extreme explosion events [J]. International Journal of Protective Structures, 2023, 14(3): 438–458. DOI: 10.1177/20414196231172563.
|
| [10] |
FOUCHIER C, LABOUREUR D, YOUINOU L, et al. Experimental investigation of blast wave propagation in an urban environment [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 5–10. DOI: 10.1016/j.jlp.2017.05.003.
|
| [11] |
殷文骏, 童念雪, 程帅, 等. 爆炸驱动激波管冲击波压力参数研究 [J]. 现代应用物理, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.
YIN W J, TONG N X, CHENG S, et al. Shock wave pressure parameters of blast-driven shock tube [J]. Modern Applied Physics, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.
|
| [12] |
张亮永, 卢强, 王同东, 等. 近地面爆源参数的贝叶斯声震联合反演方法 [J]. 现代应用物理, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.
ZHANG L Y, LU Q, WANG T D, et al. Bayesian method for acoustic-seismic joint inversion of near-surface explosion parameters [J]. Modern Applied Physics, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.
|
| [13] |
王志凯, 梁永辉, 戴伯达, 等. 近自由液面聚能战斗部水下爆炸威力场 [J]. 现代应用物理, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.
WANG Z K, LIANG Y H, DAI B D, et al. Underwater explosion power field of near-free surface shaped charge warhead [J]. Modern Applied Physics, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.
|
| [14] |
DRAZIN W. Blast propagation and damage in urban topographies [D]. UK: University of Cambridge, 2018. DOI: 10.17863/CAM.23456.
|
| [15] |
REMENNIKOV A. A review of methods for predicting bomb blast effects on buildings [J]. Journal of Battlefield Technology, 2003, 6(3): 5–10.
|
| [16] |
SMITH P D, ROSE T A. Blast wave propagation in city streets-an overview [J]. Structural Safety and Reliability, 2006, 8(1): 16–28. DOI: 10.1016/j.strusafe.2005.09.001.
|
| [17] |
HAO H, HAO Y, LI J, et al. Review of the current practices in blast resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1–31. DOI: 10.1177/1369433216653842.
|
| [18] |
BIRNBAUM N K, COWLER M S, ITOH M, et al. AUTODYN-an interactive non-linear dynamic analysis program for microcomputers through supercomputers [M]. Netherlands: Balkema, 1987.
|
| [19] |
CREPEAU J E, NEEDHAM C E. Verification and validation of SHAMRC for nonideal airblast (NIAB) phenomenology [R]. USA: Defense Threat Reduction Agency, 2010.
|
| [20] |
NOBLE C R, ANDERSON A T, BARTON N, et al. *ALE3D: An arbitrary lagrangian-eulerian multi-physics code* [R]. USA: Lawrence Livermore National Laboratory, 2017. DOI: 10.2172/1375584.
|
| [21] |
JEFFREY H, PETER V, TIMOTHY B. BlastFoam version 6.0 User Guide [M]. USA: BlastFoam Consortium, 2022.
|
| [22] |
KEVIN S, FABIEN P, SEBASTIEN L E, et al. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows [J]. Computer Physics Communications, 2020, 251: 107093. DOI: 10.1016/j.cpc.2019.107093.
|
| [23] |
FU M Y, LI R, LU T, et al. A hybrid fluid-solid interaction scheme combining the multi-component diffuse interface method and the material point method [J]. Communications in Computational Physics, 2022, 32(5): 23–49. DOI: 10.4208/cicp.OA-2022-0001.
|
| [24] |
CHEN L, LI R, YAO C B. An approximate solver for multi-medium Riemann problem with Mie-Gruneisen equations of state [J]. Research in the Mathematical Sciences, 2018, 5(3): 31–59. DOI: 10.1007/s40687-018-0151-3.
|
| [25] |
GUO Y H, LI R, YAO C B. A numerical method on Eulerian grids for two-phase compressible flow [J]. Advances in Applied Mathematics and Mechanics, 2016, 8(2): 187–212. DOI: 10.4208/aamm.2014.m697.
|
| [26] |
ZEIN A, HANTKE M, WARNECKE G. Modeling phase transition for compressible two-phase flows applied to meta stable liquids [J]. Journal of Computational Physics, 2010, 229(12): 2964–2998. DOI: 10.1016/j.jcp.2010.01.001.
|
| [27] |
SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 105–130. DOI: 10.1146/annurev-fluid-122316-050109.
|
| [28] |
BAER M, NUNZIATO J. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials [J]. Journal of Multiphase Flow, 1986, 12(5): 861–889. DOI: 10.1016/0301-9322(86)90017-0.
|
| [29] |
SAINSAULIEU L. Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver [J]. Journal of Computational Physics, 1995, 121(4): 1–28. DOI: 10.1006/jcph.1995.1201.
|
| [30] |
SAUREL R, PETITPAS F, BERRY R A. Simple and efficient relaxation methods for interfaces separating compressible fluids. Cavitating flows and shocks in multiphase mixture [J]. Journal of Computational Physics, 2009, 228(1): 1678–1712. DOI: 10.1016/j.jcp.2008.11.002.
|
| [31] |
SAUREL R, PETITPAS F. Modelling phase transition in metastable liquids: application to cavitating and flashing flows [J]. Journal of Fluid Mechanics, 2008, 607: 313–350. DOI: 10.1017/S0022112008002061.
|
| [32] |
PELANTI M, SHYUE K M. A mixture-energy-consistent six-equation two-phase numerical model for fluid with interfaces, cavitation and evaporation waves [J]. Journal of Computational Physics, 2014, 259: 331–357. DOI: 10.1016/j.jcp.2013.12.011.
|
| [33] |
PELANTI M, SHYUE K M. A numerical model for multiphase liquid-vapor gas flows with interfaces and cavitation [J]. International Journal of Multiphase Flow, 2019, 113: 208–230. DOI: 10.1016/j.ijmultiphaseflow.2018.10.012.
|
| [34] |
KAPILA A, MENIKOFF R, BDZIL J, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations [J]. Physics of Fluids, 2001, 13(9): 3002–3024. DOI: 10.1063/1.1398042.
|
| [35] |
ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(1): 577–616. DOI: 10.1006/jcph.2002.7143.
|
| [36] |
GARRICK D P, OWKES M, REGELE J D. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension [J]. Journal of Computational Physics, 2017, 339: 46–67. DOI: 10.1016/j.jcp.2017.03.012.
|
| [37] |
ZHANG J. A simple and effective five-equation two-phase numerical model for liquid-vapor phase transition in cavitating flows [J]. International Journal of Multiphase Flow, 2020, 132: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103348.
|
| [38] |
ABGRALL R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach [J]. Journal of Computational Physics, 1996, 125(1): 150–160. DOI: 10.1006/jcph.1996.0085.
|
| [39] |
JOHNSEN E, HAM F. Preventing numerical errors generated by interface capturing schemes in compressible multi-material flows [J]. Journal of Computational Physics, 2012, 231(4): 5705–5717. DOI: 10.1016/j.jcp.2012.04.043.
|
| [40] |
MOVAHED P, JOHNSEN E. A solution adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability [J]. Journal of Computational Physics, 2013, 239: 166–186. DOI: 10.1016/j.jcp.2012.12.007.
|
| [41] |
SCARDOVELLI R, ZALESKI S. Direct numerical simulation of free-surface and interfacial flow [J]. Annual Review of Fluid Mechanics, 1999, 31: 567–603. DOI: 10.1146/annurev.fluid.31.1.567.
|
| [42] |
NOH W F, WOODWARD P. SLIC (Simple line interface calculation) [C]// Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer, 1976: 330–340. DOI: 10.1007/BFb0019743.
|
| [43] |
SETHIAN J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169(2): 503–555. DOI: 10.1006/jcph.2000.6544.
|
| [44] |
SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114(1): 146–159. DOI: 10.1006/jcph.1994.1155.
|
| [45] |
AHN H T, SHASHKOV M. Multi-material interface reconstruction on generalized polyhedral meshes [J]. Journal of Computational Physics, 2007, 226(2): 2096–2132. DOI: 10.1016/j.jcp.2007.06.029.
|
| [46] |
DYADECHKO V, SHASHKOV D M. Reconstruction of multi-material interfaces from moment data [J]. Journal of Computational Physics, 2008, 227(11): 5361–5384. DOI: 10.1016/j.jcp.2008.01.041.
|
| [47] |
ANBARLOOEI H R, MAZAHERI K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(47): 3782–3794. DOI: 10.1016/j.cma.2009.08.013.
|
| [48] |
GLIMM J, GROVE J W, LI X L. Three-dimensional front tracking [J]. SIAM Journal on Scientific Computing, 1998, 19(3): 703–727. DOI: 10.1137/S1064827595293600.
|
| [49] |
TRYGGVASON G, BUNNER B, ESMAEELI A. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
|
| [50] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1987, 71(2): 231–303. DOI: 10.1016/0021-9991(87)90031-3.
|
| [51] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439–471. DOI: 10.1016/0021-9991(88)90177-5.
|
| [52] |
JIANG J S, SHU C W. Efficient implementation of Weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
|
| [53] |
SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems [J]. SIAM Review, 2009, 51(1): 82–126. DOI: 10.1137/070679065.
|
| [54] |
SHUKLA R K, PANTANO C, FREUND J B. An interface capturing method for the simulation of multi-phase compressible flows [J]. Journal of Computational Physics, 2010, 229(10): 7411–7439. DOI: 10.1016/j.jcp.2010.06.025.
|
| [55] |
SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows [J]. Journal of Computational Physics, 2014, 276: 508–540. DOI: 10.1016/j.jcp.2014.07.038.
|
| [56] |
NGUYEN V T, PHAN T H, PARK W G. Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpening five-equation model [J]. International Journal of Multiphase Flow, 2021, 135: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103512.
|
| [57] |
TIWARI A, FREUND J B, PANTANO C. A diffuse interface model with immiscibility preservation [J]. Journal of Computational Physics, 2013, 252: 290–309. DOI: 10.1016/j.jcp.2013.06.018.
|
| [58] |
CHIAPOLINO A, SAUREL R, NKONGA B. Sharpening diffuse interfaces with compressible fluids on unstructured meshes [J]. Journal of Computational Physics, 2017, 340: 389–417. DOI: 10.1016/j.jcp.2017.03.056.
|
| [59] |
HEWITT E S. The Gibbs-Wilbraham phenomenon: An episode in fourier analysis [J]. Archive for History of Exact Sciences, 1979, 21: 129–160. DOI: 10.1007/BF00330404.
|
| [60] |
XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function [J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. DOI: 10.1002/fld.975.
|
| [61] |
XIAO F, CHEN L D. Revisit to the thinc scheme: A simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. DOI: 10.1016/j.jcp.2011.05.030.
|
| [62] |
XIE B, XIAO F. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature [J]. Journal of Computational Physics, 2017, 349: 415–440. DOI: 10.1016/j.jcp.2017.08.006.
|
| [63] |
CHENG L D, DENG X, XIE B, et al. Low-dissipation bvd schemes for single and multi-phase compressible flows on unstructured grids [J]. Journal of Computational Physics, 2021, 428: 109092. DOI: 10.1016/j.jcp.2020.109092.
|
| [64] |
DENG X, INABA S, XIE B, et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces [J]. Journal of Computational Physics, 2018, 371: 945–966. DOI: 10.1016/j.jcp.2018.05.038.
|
| [65] |
WAKIMURA H, TAKAGI S, XIAO F. Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing principle [J]. Computers & Fluids, 2022, 233: 105219. DOI: 10.1016/j.compfluid.2021.105219.
|
| [66] |
DENG X, SHIMIZU Y, XIAO F. A fifth-order shock capturing scheme with two stage boundary variation diminishing algorithm [J]. Journal of Computational Physics, 2019, 386: 323–349. DOI: 10.1016/j.jcp.2019.02.009.
|
| [67] |
HUANG M S, CHENG L D, YING W J. A structure-preserving reconstruction scheme for compressible single- and multi-phase flows based on artificial neural networks [J]. Journal of Computational Physics, 2024, 499: 112345. DOI: 10.1016/j.jcp.2023.112345.
|
| [68] |
LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. USA: Lawrence Radiation Laboratory, 1968. DOI: 10.2172/4783904.
|
| [69] |
李秦超, 姚成宝, 程帅, 等. 神经网络状态方程在强爆炸冲击波数值模拟中的应用 [J]. 爆炸与冲击, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.
LI Q C, YAO C B, CHENG S, et al. Application of the neural network equation of state in numerical simulation of intense blast wave [J]. Explosion and Shock Waves, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.
|
| [70] |
GLASSTONE S, DOLAN P J. Effects of nuclear weapons [M]. USA: United States Department of Defense, 1977: 453–501.
|