• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
XU Chengyi, LIU Kun, KANG Bao, SONG Jie, LI Zhongxin, WU Zhilin. Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates[J]. Explosion And Shock Waves, 2025, 45(7): 071426. doi: 10.11883/bzycj-2024-0513
Citation: XU Chengyi, LIU Kun, KANG Bao, SONG Jie, LI Zhongxin, WU Zhilin. Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates[J]. Explosion And Shock Waves, 2025, 45(7): 071426. doi: 10.11883/bzycj-2024-0513

Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates

doi: 10.11883/bzycj-2024-0513
  • Received Date: 2024-12-31
  • Rev Recd Date: 2025-04-15
  • Available Online: 2025-04-16
  • Publish Date: 2025-07-05
  • Cortical bone, as a critical component of the human skeletal system, effectively disperses and absorbs external impact forces, protecting the internal medullary cavity, surrounding soft tissues, and organs from damage. In order to investigate the mechanical response of cortical bone under impact loading, quasi-static and dynamic compression experiments were conducted on porcine cortical bone at varying strain rates using a universal material testing machine and a split Hopkinson pressure bar apparatus. The compression deformation characteristics of cortical bone were observed by employing ultra-depth three-dimensional microscopy and digital image correlation techniques. A viscoelastic damage constitutive model was applied to fit the experimental data, and the model parameters were determined. The results demonstrate that the compression process of cortical bone is characterized by the initiation and propagation of microcracks, and mechanical properties of the material exhibit significant strain-rate dependence. The elastic modulus, yield stress, and compressive strength increase significantly with increasing strain rates. Under quasi-static loading, the stress-strain curve consists of distinct elastic and plastic deformation stages. In contrast, under high-strain-rate loading, the stress-strain response remains purely elastic at strains below 0.2%, but transitions into a highly nonlinear regime with increasing compression. Notably, no significant plastic deformation occurs under dynamic loading, revealing pronounced viscoelastic behavior. Comparison between the experimental data and theoretical curves from the constitutive model shows good agreement, with minimal deviations between predicted and measured values. The model accurately captures the compressive mechanical behavior of cortical bone across different strain rates. This study provides theoretical references for the treatment of impact-induced human injuries and protective designs.
  • loading
  • [1]
    COWIN S C. Bone mechanics handbook [M]. 2nd ed. Boca Raton: CRC Press, 2001: 1–4. DOI: 10.1201/b14263.
    [2]
    张冠军, 邓先攀, 杨洁, 等. 皮质骨试样制备及其材料参数识别方法研究 [J]. 中国生物医学工程学报, 2017, 36(1): 75–82. DOI: 10.3969/j.issn.0258-8021.2017.01.010.

    ZHANG G J, DENG X P, YANG J, et al. A study on cortical bone specimens preparation and method to calculate the mechanical parameters [J]. Chinese Journal of Biomedical Engineering, 2017, 36(1): 75–82. DOI: 10.3969/j.issn.0258-8021.2017.01.010.
    [3]
    李昕, 陈利, 张庆明, 等. 猪下肢骨骼的冲击压缩试验研究 [J]. 中国测试, 2016, 42(10): 63–67. DOI: 10.11857/j.issn.1674-5124.2016.10.012.

    LI X, CHEN L, ZHANG Q M, et al. Research on shock compression test of pig’s lower limb [J]. China Measurement & Test, 2016, 42(10): 63–67. DOI: 10.11857/j.issn.1674-5124.2016.10.012.
    [4]
    SANBORN B, FOSTER M. Effect of loading rate and orientation on the compressive response of human cortical bone [R]. Army Research Laboratory Technical Report, 2008. ARL-TR-6907.
    [5]
    KULIN R M, JIANG F C, VECCHIO K S. Loading rate effects on the R-curve behavior of cortical bone [J]. Acta Biomaterialia, 2011, 7(2): 724–732. DOI: 10.1016/j.actbio.2010.09.027.
    [6]
    安兵兵, 李凯, 张东升. 皮质骨断裂力学行为的实验研究 [J]. 力学学报, 2010, 42(6): 1164–1171. DOI: 10.6052/0459-1879-2010-6-lxxb2009-604.

    AN B B, LI K, ZHANG D S. An experimental approach on fracture behavior of cortical bones [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1164–1171. DOI: 10.6052/0459-1879-2010-6-lxxb2009-604.
    [7]
    曾煊. 适用于碰撞人体有限元模型的下肢皮质骨材料率变性实验研究 [D]. 重庆: 重庆理工大学, 2019: 9–53.

    ZENG X. Experiment research on strain rate dependency of material properties of lower limb cortical bone applied for human safety finite element models [D]. Chongqing: Chongqing University of Technology, 2019: 9–53.
    [8]
    雷建银. 不同工况下骨盆的生物力学响应研究 [D]. 太原: 太原理工大学, 2018: 69–85.

    LEI J Y. The biomechanical response research of pelvis under different working conditions [D]. Taiyuan: Taiyuan University of Technology, 2018: 69–85.
    [9]
    顾红跃. 长骨力学特性沿轴向和周向的变化研究 [D]. 长沙: 湖南大学, 2021: 33–45. DOI: 10.27135/d.cnki.ghudu.2021.003644.

    GU H Y. Study on axial and circumferential variations of mechanical properties of long bone [D]. Changsha: Hunan University, 2021: 33–45. DOI: 10.27135/d.cnki.ghudu.2021.003644.
    [10]
    翟乃川. 皮质骨微观结构和骨矿物密度对其力学特性的影响研究 [D]. 长沙: 湖南大学, 2018: 19–32.

    ZHAI N C. Effect of microstructure and bone mineral density on mechanical properties of cortical bone [D]. Changsha: Hunan University, 2018: 19–32.
    [11]
    蔡志华, 周培月, 汪剑辉, 等. 骨组织准静态和动态压缩试验与本构模型研究 [J]. 实验力学, 2021, 36(3): 389–396. DOI: 10.7520/1001-4888-21-033.

    CAI Z H, ZHOU P Y, WANG J H, et al. Study on quasi-static and dynamic compression tests and constitutive model of bone tissue [J]. Journal of Experimental Mechanics, 2021, 36(3): 389–396. DOI: 10.7520/1001-4888-21-033.
    [12]
    张佃元, 于晨, 郝文勇, 等. 爆炸冲击载荷下猪肺部的损伤特性 [J]. 爆炸与冲击, 2024, 44(12): 121433. DOI: 10.11883/bzycj-2024-0262.

    ZHANG D Y, YU C, HAO W Y, et al. Injury properties of porcine lung under blast load [J]. Explosion and Shock Waves, 2024, 44(12): 121433. DOI: 10.11883/bzycj-2024-0262.
    [13]
    LIU K, WU Z L, REN H L, et al. Strain rate sensitive compressive response of gelatine: experimental and constitutive analysis [J]. Polymer Testing, 2017, 64: 254–266. DOI: 10.1016/j.polymertesting.2017.09.008.
    [14]
    余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011: 39–40.

    YU T X, QIU X M. Introduction to impact dynamics [M]. Beijing: Tsinghua University Press, 2011: 39–40.
    [15]
    李国和, 王敏杰. 淬硬45钢在高温、高应变率下的动态力学性能及本构关系 [J]. 爆炸与冲击, 2010, 30(4): 433–438. DOI: 10.11883/1001-1455(2010)04-0433-06.

    LI G H, WANG M J. Dynamic mechanical properties and constitutive relationship of hardened steel (45HRC) under high temperature and high strain rate [J]. Explosion and Shock Waves, 2010, 30(4): 433–438. DOI: 10.11883/1001-1455(2010)04-0433-06.
    [16]
    王尚城, 王冬梅, 汪方, 等. 人骨拉伸和压缩力学的性能测试 [J]. 中国组织工程研究, 2013, 17(7): 1180–1184. DOI: 10.3969/.issn.2095-4344.2013.07.008.

    WANG S C, WANG D M, WANG F, et al. Tensile and compressive mechanical property of human bone tissue [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(7): 1180–1184. DOI: 10.3969/.issn.2095-4344.2013.07.008.
    [17]
    CLOETE T J, PAUL G, ISMAIL E B. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2015): 20130210. DOI: 10.1098/rsta.2013.0210.
    [18]
    王礼立, 董新龙, 孙紫建. 高应变率下计及损伤演化的材料动态本构行为 [J]. 爆炸与冲击, 2006, 26(3): 193–198. DOI: 10.11883/1001-1455(2006)03-0193-06.

    WANG L L, DONG X L, SUN Z J. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution [J]. Explosion and Shock Waves, 2006, 26(3): 193–198. DOI: 10.11883/1001-1455(2006)03-0193-06.
    [19]
    孙朝翔, 鞠玉涛, 郑亚, 等. 双基推进剂的高应变率力学特性及其含损伤ZWT本构 [J]. 爆炸与冲击, 2013, 33(5): 507–512. DOI: 10.11883/1001-1455(2013)05-0507-06.

    SUN C X, JU Y T, ZHENG Y, et al. Mechanical properties of double-base propellant at high strain rates and its damage-modified ZWT constitutive model [J]. Explosion and Shock Waves, 2013, 33(5): 507–512. DOI: 10.11883/1001-1455(2013)05-0507-06.
    [20]
    王礼立. 爆炸/冲击动力学学习研究中的若干疑惑 [J]. 爆炸与冲击, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.

    WANG L L. Some doubts in studying explosion/impact dynamics [J]. Explosion and Shock Waves, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(3)

    Article Metrics

    Article views (103) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return