• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
BAI Chunyu, CHENG Siwuwei, XIE Jiang, CHENG Shengjie, LI Sixuan. Research on the crash response of blended-wing-body civil aircraft at different vertical velocity[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0520
Citation: BAI Chunyu, CHENG Siwuwei, XIE Jiang, CHENG Shengjie, LI Sixuan. Research on the crash response of blended-wing-body civil aircraft at different vertical velocity[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0520

Research on the crash response of blended-wing-body civil aircraft at different vertical velocity

doi: 10.11883/bzycj-2024-0520
  • Received Date: 2024-12-30
  • Rev Recd Date: 2025-06-24
  • Available Online: 2025-07-01
  • Significant structural and layout disparities exist between the blended wing body (BWB) civil aircraft and conventional cylindrical fuselage metal aircraft. These differences render the impact resistance characteristics of the non-circular fuselage structure and the injury mechanisms for occupants unclear. To address this, a 460-seat BWB aircraft model was developed based on the pultruded rod stitched efficient unitized structure (PRSEUS) proposed by the National Aeronautics and Space Administration (NASA). The aircraft features a wingspan of 80 meters, a range of approximately 16,000 km, a cruising Mach number of 0.85, and a cruising altitude of 11 000 m. Three typical loading conditions were employed to evaluate the strength and stiffness of the BWB structure: critical maneuvering loads (2.5g positive overload and −1.0g negative overload) and cabin pressurization loads (double the cabin pressurization load). Through iterative structural design optimization, the model was confirmed to meet these typical loading requirements while demonstrating sufficient safety margins. The model incorporated all major structural components of the BWB configuration, including skin, frames, stringers, cargo floor, cabin floor, support columns, and fuselage ribs. In the finite element modeling process, elements with minimal influence on the crash response were reasonably simplified to reduce computational complexity. For instance, the outer wings and engines were simplified as concentrated mass points, and the cabin seats and passengers were modeled as concentrated masses fixed to the seat rails. The primary structural components, such as the skin, stringers, floor, and floor beams, were constructed from AS4 carbon fiber composite laminates and modeled using shell elements. The pultruded rods were made of AS4 carbon fiber composite and modeled using beam elements. The foam core of the frames and fuselage ribs were made of Rohacell-110-WF foam material and modeled using solid elements. The remaining structures were made of 7075 aluminum alloy and modeled using shell elements. The final model had a total mass of 162.87 tons and consisted of 2 679 991 elements. Five vertical impact velocities ranging from 7.92 to 9.14 m/s were selected to analyze the cabin space integrity, acceleration response of the cabin floor, and the impact characteristics of the primary load-bearing structures. The results indicate that the cabin area of the lift-body fuselage remains largely intact under the different impact velocities. The primary damage occurs below the cabin floor, with compressive damage concentrated in the lower structures of the middle and aft fuselage. The survivable space is preserved. Compared to a round-section fuselage, the deformation of the BWB frames is relatively small, and upward bulging is not significant, making it challenging to form effective plastic hinges. During the crash, the acceleration load distribution of the blended wing body-integrated aircraft exhibits a decreasing trend from the central aisle to the sides of the fuselage, with peak acceleration loads being higher at the central aisle. Under all five crash conditions, passenger injury levels at various cabin positions fall within the serious but acceptable and safe regions. Regarding structural energy absorption, the frames are identified as the primary energy-absorbing structures, followed by the fuselage ribs. However, the cargo pillars do not effectively crush and absorb energy. For future crashworthiness design of BWB civil aircraft, the cargo structure should be a key consideration.
  • loading
  • [1]
    OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design [J]. Progress in Aerospace Sciences, 2016, 82: 1–23. DOI: 10.1016/j.paerosci.2015.12.002.
    [2]
    夏明, 巩文秀, 郑建强, 等. 欧美翼身融合大型民机方案综述 [J]. 民用飞机设计与研究, 2021(3): 123–134. DOI: 10.19416/j.cnki.1674-9804.2021.03.021.

    XIA M, GONG W X, ZHENG J Q, et al. A review of blended-wing-body for large civil aircraft of Europe and America [J]. Civil Aircraft Design & Research, 2021(3): 123–134. DOI: 10.19416/j.cnki.1674-9804.2021.03.021.
    [3]
    张永杰, 吴莹莹, 赵书旺, 等. 翼身融合布局民机非圆截面机身结构设计研究综述 [J]. 航空学报, 2019, 40(9): 623054. DOI: 10.7527/S1000-6893.2019.23054.

    ZHANG Y J, WU Y Y, ZHAO S W, et al. Review of non-circular cross-section fuselage structure design research on blended-wing-body civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623054. DOI: 10.7527/S1000-6893.2019.23054.
    [4]
    MUKHOPADHYAY V, SOBIESZCZANSKI-SOBIESKI J, KOSAKA I, et al. Analysis, design, and optimization of noncylindrical fuselage for blended-wing-body vehicle [J]. Journal of Aircraft, 2004, 41(4): 925–930. DOI: 10.2514/1.417.
    [5]
    LIEBACK R. Blended wing body design challenges [C]//Proceedings of the AIAA International Air and Space Symposium and Exposition: the Next 100 Years. Dayton: AIAA, 2003: 2659. DOI: 10.2514/6.2003-2659.
    [6]
    VELICKI A, JEGLEY D. PRSEUS structural concept development [C]//Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014: 0259. DOI: 10.2514/6.2014-0259.
    [7]
    张永杰, 周静飘, 石磊, 等. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法 [J]. 航空学报, 2024, 45(12): 229331. DOI: 10.7527/S1000-6893.2023.29331.

    ZHANG Y J, ZHOU J P, SHI L, et al. Optimization design method of central fuselage spherical deficient surface frames in blended-wing-body civil aircraft based on PRSEUS structure [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 229331. DOI: 10.7527/S1000-6893.2023.29331.
    [8]
    HORNE M R, MADARAS E I. Evaluation of acoustic emission SHM of PRSEUS composite pressure cube tests: NASA/TM-2013-217993 [R]. Hampton: Langley Research Center, 2013.
    [9]
    解江, 牟浩蕾, 冯振宇. 运输类飞机适坠性合格审定导论 [M]. 北京: 中国民航出版社, 2022: 11-17.
    [10]
    GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety [J]. Progress in Aerospace Sciences, 2018, 98: 106–123. DOI: 10.1016/j.paerosci.2018.03.008.
    [11]
    任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计 [J]. 工程力学, 2013, 30(10): 296–304. DOI: 10.6052/j.issn.1000-4750.2012.07.0478.

    REN Y R, XIANG J W, LUO Z P, et al. Crashworthiness analysis and design of aircraft fuselage structure [J]. Engineering Mechanics, 2013, 30(10): 296–304. DOI: 10.6052/j.issn.1000-4750.2012.07.0478.
    [12]
    郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计 [J]. 航空学报, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.

    ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.
    [13]
    张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.

    ZHANG X Y, HUI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
    [14]
    CAPUTO F, LAMANNA G, PERFETTO D, et al. Experimental and numerical crashworthiness study of a full-scale composite fuselage section [J]. AIAA Journal, 2021, 59(2): 700–718. DOI: 10.2514/1.J059216.
    [15]
    解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟 [J]. 航空学报, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.

    XIE J, MOU H L FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.
    [16]
    杨强, 惠旭龙, 白春玉, 等. 高锁螺栓连接件动态拉伸响应与失效机理 [J]. 爆炸与冲击, 2020, 40(10): 103102. DOI: 10.11883/bzycj-2019-0475.

    YANG Q, HUI X L, BAI C Y, et al. Dynamic tensile response and failure mechanism of hi-lock bolt joint [J]. Explosion and Shock Waves, 2020, 40(10): 103102. DOI: 10.11883/bzycj-2019-0475.
    [17]
    刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估 [J]. 航空学报, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.

    LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.
    [18]
    牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析 [J]. 航空学报, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.

    MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.
    [19]
    FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane [J]. Journal of Aircraft, 1987, 24(4): 274–280. DOI: 10.2514/3.45437.
    [20]
    JACKSON K E, FASANELLA E L. Development of an LS-DYNA model of an ATR42-300 aircraft for crash simulation [C]//Proceedings of the ICRASH 2004-International Crashworthiness Conference. San Francisco: Langley Research Center, 2004.
    [21]
    JACKSON K E, PUTNAM J B. Simulation of a full-scale crash test of a Fokker F28 fellowship aircraft: NASA/TM-2020-220435 [R]. Hampton: Langley Research Center, 2020.
    [22]
    刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.

    LIU X C, HUI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
    [23]
    STURM R, HEPPERLE M. Crashworthiness and ditching behaviour of blended-wing-body (BWB) aircraft design [J]. International Journal of Crashworthiness, 2015, 20(6): 592–601. DOI: 10.1080/13588265.2015.1068997.
    [24]
    CUI Z, LAI G J, WANG Q F, et al. Wind tunnel investigation of different engine layouts of a blended-wing-body transport [J]. Chinese Journal of Aeronautics, 2023, 36(9): 123–132. DOI: 10.1016/j.cja.2023.04.027.
    [25]
    VELICKI A, YOVANOF N, BARAJA J, et al. Damage arresting composites for shaped vehicles - phase II final report: NASA/CR-2011-216880 [R]. Houston: NASA, 2011.
    [26]
    中国民用航空局. CCAR-25-R4 运输类飞机适航标准 [S]. 北京: 中华人民共和国交通运输部, 2011.
    [27]
    刘小川, 张欣玥, 惠旭龙, 等. 结构修理对民机机身耐撞性的影响 [J]. 航空学报, 2023, 44(10): 227517. DOI: 10.7527/S1000-6893.2022.27517.

    LIU X C, ZHANG X Y, HUI X L, et al. Influence of structural repairs on crashworthiness of civil aircraft fuselage [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 227517. DOI: 10.7527/S1000-6893.2022.27517.
    [28]
    Transport Aircraft Crashworthiness and Ditching Working Group. Transport aircraft crashworthiness and ditching working group report to FAA [R]. Washington: Federal Aviation Administration, 2018.
    [29]
    程坤. 典型运输类飞机客舱地板下部结构坠撞特性研究 [D]. 天津: 中国民航大学, 2020: 25–46.
    [30]
    EIBAND A M. Human tolerance to rapidly applied accelerations: a summary of the literature: NASA-MEMO-5-19-59E [R]. Cleveland: NASA Lewis Research Center, 1959.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(7)

    Article Metrics

    Article views (201) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return