• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
WANG Jiaqi, WANG Yang, LI Qi, WU Zhibin. Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank[J]. Explosion And Shock Waves, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522
Citation: WANG Jiaqi, WANG Yang, LI Qi, WU Zhibin. Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank[J]. Explosion And Shock Waves, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522

Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank

doi: 10.11883/bzycj-2024-0522
  • Received Date: 2024-12-31
  • Rev Recd Date: 2025-05-07
  • Available Online: 2025-05-07
  • Publish Date: 2025-07-05
  • A study was conducted to investigate the crash impact response of the lower fuselage structure of a typical civil aircraft with an auxiliary fuel tank installed. The results of vertical crash tests conducted at impact velocities of 1.53, 2.78 and 5.96 m/s were obtained. These results include the influence of installing auxiliary fuel tanks on the impact response and the structural deformation and damage of the lower fuselage structure. The validity of the corresponding finite element model was verified through a correlation analysis between the simulation and test results. The impact energy absorption form during the vertical crash process was analyzed through simulation results. The results show that the structure mainly deforms elastically with only slight plastic deformation under the impact condition of 1.53 m/s. Under the impact condition of 2.78 m/s, the fuselage frames, skin, and T-shaped support components of the cargo floor are mainly deformed by bending, and the total structures were slightly compressed. The T-shaped support components connected to the left cargo floor slide rails extended upward and did not touch the fuel tank. Under the impact condition of 5.96 m/s, the lower fuselage structures were seriously compressed and the left diagonal brace was fractured under pressure. The auxiliary fuel tank sank to the cargo floor. The simulation analysis can effectively model the deformation and damage of the structure during the vertical crash process at different impact velocities. The impact force on the ground and the trend of acceleration at typical locations obtained by analysis are in good agreement with the test results. The analysis results show that the fuselage frame is the main deformation and energy absorption component in the crash of the lower fuselage structure equipped with auxiliary fuel tanks. The skin and auxiliary fuel tank are the secondary structures that participate in deformation and energy absorption. As the auxiliary fuel tank is filled with more fuel, the simulation results show that the energy absorption capacity of the auxiliary fuel tank and the lower fuselage structure components increases, i.e., the degree of damage becomes more serious. The research results can provide support for the anti-crash design, analysis, and verification of the fuselage structure of civil aircraft with auxiliary fuel tanks installed.
  • loading
  • [1]
    GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety [J]. Progress in Aerospace Sciences, 2018, 98: 106–123. DOI: 10.1016/j.paerosci.2018.03.008.
    [2]
    刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战 [J]. 固体力学学报, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.

    LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures [J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.
    [3]
    刘小川. 民用飞机坠撞事故研究及启示 [M]. 北京: 航空工业出版社, 2022: 153–183.

    LIU X C. Research and enlightenment on civil aircraft crash accident [M]. Beijing: Aviation Industry Press, 2022: 153–183.
    [4]
    FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane [J]. Journal of Aircraft, 1987, 24(4): 274–280. DOI: 10.2514/3.45437.
    [5]
    FASANELLA E L, JACKSON K E, JONES Y T, et al. Crash simulation of a Boeing 737 fuselage section vertical drop test [C]//Proceedings of the Third KRASH User’s Conference. 2001.
    [6]
    FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank: 23681-0001 [R]. USA: U. S. Army Research Laboratory, Vehicle Technology Center, Langley Research Center, 2002.
    [7]
    JACKSON K E, FASANELLA E L. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage [R]. USA: NASA Langley Technical Report Server, 2001: 22–25.
    [8]
    HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214(5): 265–280. DOI: 10.1243/0954410001532051.
    [9]
    KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections: 2003-01-3027 [R]. Montreal: SAE World Aviation Congress, 2003.
    [10]
    KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]//SAE Technical Paper Series. Warrendale: SAE International 2002: 1–10.
    [11]
    朱晓东, 朱广荣. 民机典型机身舱段结构坠撞有限元数值仿真研究 [J]. 振动工程学报, 2008, 21(S1): 28–30.

    ZHU X D, ZHU G R. Crashworthiness simulation of civil aircraft fuselage section [J]. Journal of Vibration Engineering, 2008, 21(S1): 28–30.
    [12]
    汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验 [J]. 复合材料学报, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.

    WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.
    [13]
    施萌, 汪洋, 吴志斌, 等. 民机货舱下部复合材料结构抗坠撞吸能特性试验研究 [J]. 复合材料科学与工程, 2021(9): 83–88. DOI: 10.19936/j.cnki.2096-8000.20210928.013.

    SHI M, WANG Y, WU Z B, et al. Study on the anti-crash energy absorption characteristic of composite structure in the sub-cargo structure [J]. Composites Science and Engineering, 2021(9): 83–88. DOI: 10.19936/j.cnki.2096-8000.20210928.013.
    [14]
    任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响 [J]. 航空学报, 2010, 31(2): 271–276.

    REN Y R, XIANG J W, LUO Z P, et al. Effect of Cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271–276.
    [15]
    郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计 [J]. 航空学报, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.

    ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.
    [16]
    刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估 [J]. 航空学报, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.

    LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.
    [17]
    刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.

    LIU X C, XI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
    [18]
    张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.

    ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
    [19]
    解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟 [J]. 航空学报, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.

    XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.
    [20]
    牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析 [J]. 航空学报, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.

    MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.
    [21]
    何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析 [J]. 航空学报, 2008, 29(3): 627–633. DOI: 10.3321/j.issn:1000-6893.2008.03.015.

    HE H, CHEN G P, ZHANG J B. Crash simulation of fuselage section with fuel tank [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 627–633. DOI: 10.3321/j.issn:1000-6893.2008.03.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(2)

    Article Metrics

    Article views (134) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return