• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024
Citation: LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024

Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete

doi: 10.11883/bzycj-2025-0024
  • Received Date: 2025-01-23
    Available Online: 2025-03-12
  • To investigate the penetration resistance of metal honeycomb tube-constrained concrete structures under hypervelocity impact, penetration experiments were conducted using a two-stage light gas gun with projectile velocities near 1500 m/s. The Material Point Method (MPM) was employed to simulate the penetration process and validate the reasonableness of target and projectile parameters. This method was further used to analyze the effects of honeycomb tube parameters, including wall thickness, height, diameter, and material, on the penetration resistance of the target structure. Numerical simulations showed that MPM can accurately simulate high-velocity penetration processes, with simulation results deviating from experimental data by less than 10%. Through orthogonal analysis, the factors influencing penetration depth were ranked in descending order as follows: characteristic tube depth, characteristic inner diameter, characteristic wall thickness, and material. For the cratering effect, the primary influencing factors were identified as characteristic wall thickness, characteristic tube depth, material, and characteristic inner diameter. For the projectiles tested in this study, optimization results indicated the following: A combination of 4 mm wall thickness, 150 mm height, 30 mm incircle diameter, and tungsten alloy demonstrated the best penetration resistance, reducing penetration depth by 25.1% compared to plain concrete. A combination of 4 mm wall thickness, 150 mm height, 90 mm incircle diameter, and aluminum exhibited superior resistance to the cratering effect, decreasing crater radius by 28.7% compared to plain concrete. Multi-objective optimization analysis determined the optimal overall configuration to be: 4 mm wall thickness, 150 mm height, 30 mm incircle diameter, and aluminum.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return