| Citation: | ZHANG Zhuguo, WU Zhibin, WANG Jiadong, WANG Yi, HUANG Jia, CUI Hao, LI Yulong. Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0046 |
| [1] |
周加良. 飞机鸟撞事故分析、预防及建议 [J]. 宁波大学学报, 1994, 7(1): 16–23.
ZHOU J L. Analysis and prevention and suggestion on plane-bird collision [J]. Journal of Ningbo University, 1994, 7(1): 16–23.
|
| [2] |
李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.
LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.
|
| [3] |
DOLBEER R, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990-2019: serial report number 26 [R]. Washington: Federal Aviation Administration, 2021.
|
| [4] |
NIERING E. Simulation of bird strikes on turbine engines [J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(4): 573–578. DOI: 10.1115/1.2906207.
|
| [5] |
LANGRAND B, BAYART A S, CHAUVEAU Y, et al. Assessment of multi-physics FE methods for bird strike modelling-application to a metallic riveted airframe [J]. International Journal of Crashworthiness, 2002, 7(4): 415–428. DOI: 10.1533/cras.2002.0227.
|
| [6] |
HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127–1144. DOI: 10.1016/j.ijimpeng.2004.09.004.
|
| [7] |
ENSAN M N, ZIMCIK D G, LAHOUBI M, et al. Soft body impact simulation on composite structures [J]. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(2): 283–296. DOI: 10.1139/tcsme-2008-0018.
|
| [8] |
LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009.
|
| [9] |
WAN X P, WANG W Z, ZHAO M Y. Bird impact analysis of wing leading edge structure based on SPH method [J]. Key Engineering Materials, 2011, 462/463: 524–529. DOI: 10.4028/www.scientific.net/KEM.462-463.524.
|
| [10] |
GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge [J]. Composite Structures, 2008, 86(1/2/3): 258–268. DOI: 10.1016/j.compstruct.2008.03.025.
|
| [11] |
刘军, 李玉龙, 徐绯. 基于PAM-CRASH的鸟撞飞机风挡动响应分析 [J]. 爆炸与冲击, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.
LIU J, LI Y L, XU F. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH [J]. Explosion and Shock Waves, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.
|
| [12] |
贾建东, 李志强, 杨建林, 等. 用SPH和有限元方法研究鸟撞飞机风挡问题 [J]. 航空学报, 2010, 31(1): 136–142.
JIA J D, LI Z Q, YANG J L, et al. A study of bird impact on aircraft windshield using SPH and finite element method [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 136–142.
|
| [13] |
毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析 [J]. 爆炸与冲击, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.
WU L, GUO Y N, LI Y L. Bird strike simulation on the sandwich composite structure of aircraft radome [J]. Explosion and Shock Waves, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.
|
| [14] |
中华人民共和国工业和信息化部. HB 7084-2014 民用飞机结构抗鸟撞设计与试验通用要求 [S]. 北京: 中国航空综合技术研究所, 2014.
Ministry of Industry and Information Technology. HB 7084-2014 General requirements for civil airplane bird-strike design and test [S]. Beijing: China Aviation Composite Technology Research Institute, 2014.
|
| [15] |
林晓虎, 杨庆生. 航空航天夹层结构抗冲击性能的研究现状 [J]. 航空制造技术, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.
LIN X H, YANG Q S. Research review on anti-impact property of sandwich structures in aerospace [J]. Aeronautical Manufacturing Technology, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.
|
| [16] |
肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述 [J]. 振动与冲击, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.
XIAO F, CHEN Y, ZHANG Z H, et al. A review of studying on impact dynamics of sandwich structures [J]. Journal of Vibration and Shock, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.
|
| [17] |
刘培生, 李铁藩, 傅超, 等. 多孔金属材料的应用 [J]. 功能材料, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.
LIU P S, LI T F, FU C, et al. Applications of porous metal materials [J]. Journal of Functional Materials, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.
|
| [18] |
陈祥, 李言祥. 金属泡沫材料研究进展 [J]. 材料导报, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.
CHEN X, LI Y X. Porous metals: research advances and applications [J]. Materials Reports, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.
|
| [19] |
KARSANDIK Y, SABUNCUOGLU B, YILDIRIM B, et al. Impact behavior of sandwich composites for aviation applications: a review [J]. Composite Structures, 2023, 314: 116941. DOI: 10.1016/j.compstruct.2023.116941.
|
| [20] |
HUO X T, SUN G Y, ZHANG H Y, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core [J]. Composite Structures, 2019, 223: 110835. DOI: 10.1016/j.compstruct.2019.04.007.
|
| [21] |
杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.
YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.
|
| [22] |
方志威, 侯海量, 张元豪, 等. 中高速弹体侵彻下泡沫铝夹芯结构抗侵彻性能实验研究 [J]. 舰船科学技术, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.
FANG Z W, HOU H L, ZHANG Y H, et al. Experimental investigation on aluminum foam sandwich structure under medium and high velocity bullet impact [J]. Ship Science and Technology, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.
|
| [23] |
TANG E L, ZHANG X Q, HAN Y F. Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact [J]. Journal of Materials Research and Technology, 2019, 8(5): 4620–4630. DOI: 10.1016/j.jmrt.2019.08.006.
|
| [24] |
张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
|
| [25] |
MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates – part 1: material modelling [J]. Applied Composite Materials, 2004, 11(5): 295–315. DOI: 10.1023/B:ACMA.0000037133.64496.13.
|
| [26] |
LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike [J]. International Journal of Impact Engineering, 2017, 105: 89–101. DOI: 10.1016/j.ijimpeng.2016.12.017.
|
| [27] |
ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials: a unified framework of plastic shock wave models [J]. International Journal of Impact Engineering, 2013, 53: 29–43. DOI: 10.1016/j.ijimpeng.2012.06.012.
|
| [28] |
ZHANG Y, HE S Y, LIU J G, et al. Density gradient tailoring of aluminum foam-filled tube [J]. Composite Structures, 2019, 220: 451–459. DOI: 10.1016/j.compstruct.2019.04.026.
|
| [29] |
牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究 [D]. 太原: 太原理工大学, 2015. DOI: 10.7666/d.Y2798431.
NIU W J. Research on the penetration behavior of sandwich protective structures with aluminum foam cores under impact loading [D]. Taiyuan: Taiyuan University of Technology, 2015. DOI: 10.7666/d.Y2798431.
|
| [30] |
黄苏南, 丁圆圆, 王士龙, 等. 闭孔泡沫铝动态材料参数的实验研究 [J]. 实验力学, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.
HUANG S N, DING Y Y, WANG S L, et al. Experimental investigation on dynamic material parameters of closed-cell aluminium foam [J]. Journal of Experimental Mechanics, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.
|
| [31] |
吕怡楠. 梯度泡沫铝的结构调控及冲击性能研究 [D]. 南京: 东南大学, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.
LV Y N. Gradient regulation and impact properties of density-graded aluminum foam [D]. Nanjing: Southeast University, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.
|
| [32] |
BUDGEY R. The development of a substitute artificial bird by the international bird strike research group for use in aircraft component testing [C]//Proceedings of International Bird Strike Committee 25. Amsterdam, 2000: 17–21.
|
| [33] |
刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.
LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.
|