• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
ZHANG Zhuguo, WU Zhibin, WANG Jiadong, WANG Yi, HUANG Jia, CUI Hao, LI Yulong. Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0046
Citation: ZHANG Zhuguo, WU Zhibin, WANG Jiadong, WANG Yi, HUANG Jia, CUI Hao, LI Yulong. Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0046

Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose

doi: 10.11883/bzycj-2025-0046
  • Received Date: 2025-02-18
  • Rev Recd Date: 2025-07-27
  • Available Online: 2025-08-10
  • In response to the insufficient lightweight issue of the baffle plate for the nose end frame with an aluminum alloy stiffened structure in active civil aircraft, a new type of aluminum foam sandwich baffle structure is proposed based on an in-depth exploration of the energy absorption mechanism of aluminum foam sandwich structures against bird impact. This innovative design employs an asymmetric panel configuration that includes a highly ductile 2024-T3 aluminum alloy upper face sheet, a high-strength 7075-T6 aluminum alloy lower face sheet, and an aluminum foam core layer in between. It replaces the traditional aluminum alloy stiffened panel, aiming to significantly reduce structural weight while ensuring excellent bird strike resistance. First, the effectiveness of the bird body constitutive model and its contact algorithm was verified by comparing the high-speed bird body impact test on aluminum alloy flat plates with the simulated strain data. Based on previous experimental data, combined with parameter inversion and simulation cases, the simulation data of homogeneous and gradient aluminum foams are in good agreement with the test results, which verifies the accuracy and applicability of the aluminum foam material constitutive model. Furthermore, using the professional Pam-crash software, transient impact dynamics simulations of bird strikes were conducted on both the stiffened panel structure and the aluminum foam sandwich structure end frame. Combined with the damage and deformation conditions of each component and energy absorption data, a comparative analysis was made on the differences in their impact response characteristics and energy absorption mechanisms. The study shows that the stiffened panel mainly absorbs the energy of bird body impact through its plastic deformation, while the aluminum foam sandwich structure absorbs energy synergistically through the compressive collapse failure of the core layer and the large plastic deformation mechanism of the upper face sheet. The optimized aluminum foam sandwich structure is significantly superior to the traditional stiffened panel structure in terms of energy absorption efficiency. Subsequently, a full-coverage optimization design scheme for the baffle was completed based on the energy absorption characteristics of the aluminum foam sandwich structure. According to the full-coverage bird impact simulation results, the proposed aluminum foam sandwich baffle design achieves a structural weight reduction of more than 30% while maintaining the same bird strike resistance performance as the in-service structure. This research provides reliable technical references and innovative ideas for the lightweight bird strike-resistant design of the civil aircraft nose bulkhead.
  • loading
  • [1]
    周加良. 飞机鸟撞事故分析、预防及建议 [J]. 宁波大学学报, 1994, 7(1): 16–23.

    ZHOU J L. Analysis and prevention and suggestion on plane-bird collision [J]. Journal of Ningbo University, 1994, 7(1): 16–23.
    [2]
    李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.

    LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.
    [3]
    DOLBEER R, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990-2019: serial report number 26 [R]. Washington: Federal Aviation Administration, 2021.
    [4]
    NIERING E. Simulation of bird strikes on turbine engines [J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(4): 573–578. DOI: 10.1115/1.2906207.
    [5]
    LANGRAND B, BAYART A S, CHAUVEAU Y, et al. Assessment of multi-physics FE methods for bird strike modelling-application to a metallic riveted airframe [J]. International Journal of Crashworthiness, 2002, 7(4): 415–428. DOI: 10.1533/cras.2002.0227.
    [6]
    HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127–1144. DOI: 10.1016/j.ijimpeng.2004.09.004.
    [7]
    ENSAN M N, ZIMCIK D G, LAHOUBI M, et al. Soft body impact simulation on composite structures [J]. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(2): 283–296. DOI: 10.1139/tcsme-2008-0018.
    [8]
    LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009.
    [9]
    WAN X P, WANG W Z, ZHAO M Y. Bird impact analysis of wing leading edge structure based on SPH method [J]. Key Engineering Materials, 2011, 462/463: 524–529. DOI: 10.4028/www.scientific.net/KEM.462-463.524.
    [10]
    GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge [J]. Composite Structures, 2008, 86(1/2/3): 258–268. DOI: 10.1016/j.compstruct.2008.03.025.
    [11]
    刘军, 李玉龙, 徐绯. 基于PAM-CRASH的鸟撞飞机风挡动响应分析 [J]. 爆炸与冲击, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.

    LIU J, LI Y L, XU F. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH [J]. Explosion and Shock Waves, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.
    [12]
    贾建东, 李志强, 杨建林, 等. 用SPH和有限元方法研究鸟撞飞机风挡问题 [J]. 航空学报, 2010, 31(1): 136–142.

    JIA J D, LI Z Q, YANG J L, et al. A study of bird impact on aircraft windshield using SPH and finite element method [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 136–142.
    [13]
    毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析 [J]. 爆炸与冲击, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.

    WU L, GUO Y N, LI Y L. Bird strike simulation on the sandwich composite structure of aircraft radome [J]. Explosion and Shock Waves, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.
    [14]
    中华人民共和国工业和信息化部. HB 7084-2014 民用飞机结构抗鸟撞设计与试验通用要求 [S]. 北京: 中国航空综合技术研究所, 2014.

    Ministry of Industry and Information Technology. HB 7084-2014 General requirements for civil airplane bird-strike design and test [S]. Beijing: China Aviation Composite Technology Research Institute, 2014.
    [15]
    林晓虎, 杨庆生. 航空航天夹层结构抗冲击性能的研究现状 [J]. 航空制造技术, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.

    LIN X H, YANG Q S. Research review on anti-impact property of sandwich structures in aerospace [J]. Aeronautical Manufacturing Technology, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.
    [16]
    肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述 [J]. 振动与冲击, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.

    XIAO F, CHEN Y, ZHANG Z H, et al. A review of studying on impact dynamics of sandwich structures [J]. Journal of Vibration and Shock, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.
    [17]
    刘培生, 李铁藩, 傅超, 等. 多孔金属材料的应用 [J]. 功能材料, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.

    LIU P S, LI T F, FU C, et al. Applications of porous metal materials [J]. Journal of Functional Materials, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.
    [18]
    陈祥, 李言祥. 金属泡沫材料研究进展 [J]. 材料导报, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.

    CHEN X, LI Y X. Porous metals: research advances and applications [J]. Materials Reports, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.
    [19]
    KARSANDIK Y, SABUNCUOGLU B, YILDIRIM B, et al. Impact behavior of sandwich composites for aviation applications: a review [J]. Composite Structures, 2023, 314: 116941. DOI: 10.1016/j.compstruct.2023.116941.
    [20]
    HUO X T, SUN G Y, ZHANG H Y, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core [J]. Composite Structures, 2019, 223: 110835. DOI: 10.1016/j.compstruct.2019.04.007.
    [21]
    杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.

    YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.
    [22]
    方志威, 侯海量, 张元豪, 等. 中高速弹体侵彻下泡沫铝夹芯结构抗侵彻性能实验研究 [J]. 舰船科学技术, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.

    FANG Z W, HOU H L, ZHANG Y H, et al. Experimental investigation on aluminum foam sandwich structure under medium and high velocity bullet impact [J]. Ship Science and Technology, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.
    [23]
    TANG E L, ZHANG X Q, HAN Y F. Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact [J]. Journal of Materials Research and Technology, 2019, 8(5): 4620–4630. DOI: 10.1016/j.jmrt.2019.08.006.
    [24]
    张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.

    ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
    [25]
    MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates – part 1: material modelling [J]. Applied Composite Materials, 2004, 11(5): 295–315. DOI: 10.1023/B:ACMA.0000037133.64496.13.
    [26]
    LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike [J]. International Journal of Impact Engineering, 2017, 105: 89–101. DOI: 10.1016/j.ijimpeng.2016.12.017.
    [27]
    ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials: a unified framework of plastic shock wave models [J]. International Journal of Impact Engineering, 2013, 53: 29–43. DOI: 10.1016/j.ijimpeng.2012.06.012.
    [28]
    ZHANG Y, HE S Y, LIU J G, et al. Density gradient tailoring of aluminum foam-filled tube [J]. Composite Structures, 2019, 220: 451–459. DOI: 10.1016/j.compstruct.2019.04.026.
    [29]
    牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究 [D]. 太原: 太原理工大学, 2015. DOI: 10.7666/d.Y2798431.

    NIU W J. Research on the penetration behavior of sandwich protective structures with aluminum foam cores under impact loading [D]. Taiyuan: Taiyuan University of Technology, 2015. DOI: 10.7666/d.Y2798431.
    [30]
    黄苏南, 丁圆圆, 王士龙, 等. 闭孔泡沫铝动态材料参数的实验研究 [J]. 实验力学, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.

    HUANG S N, DING Y Y, WANG S L, et al. Experimental investigation on dynamic material parameters of closed-cell aluminium foam [J]. Journal of Experimental Mechanics, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.
    [31]
    吕怡楠. 梯度泡沫铝的结构调控及冲击性能研究 [D]. 南京: 东南大学, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.

    LV Y N. Gradient regulation and impact properties of density-graded aluminum foam [D]. Nanjing: Southeast University, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.
    [32]
    BUDGEY R. The development of a substitute artificial bird by the international bird strike research group for use in aircraft component testing [C]//Proceedings of International Bird Strike Committee 25. Amsterdam, 2000: 17–21.
    [33]
    刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.

    LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (330) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return