• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
WANG Hongli, ZENG Zelin, SU Xingya, LING Jing, MEI Guiming, LIANG Yanxiang, JING Lin. Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0047
Citation: WANG Hongli, ZENG Zelin, SU Xingya, LING Jing, MEI Guiming, LIANG Yanxiang, JING Lin. Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0047

Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway

doi: 10.11883/bzycj-2025-0047
  • Received Date: 2025-02-18
  • Rev Recd Date: 2025-04-16
  • Available Online: 2025-04-18
  • With the increasing speed of trains, the impacts of mechanical shock, arc heat, and Joule heat on the high-speed railway catenary system have become increasingly significant. The coupling effect of high temperature and impact load has emerged as a key limiting factor for the safe operation of the pantograph-catenary system. This study focuses on copper-magnesium alloy materials used in the catenary system to address the challenges of dynamic impact and friction-induced heat generation in high-speed railways. To investigate the mechanical properties of the high-speed railway pantograph-catenary system under service conditions such as dynamic impact and frictional temperature rise, a DF14.205D electronic universal testing machine and a split Hopkinson pressure bar were employed. The uniaxial compression mechanical properties of the copper-magnesium alloy in the catenary were tested over a strain rate range of 0.001 s−1 to 3000 s−1 and a temperature range of 293 K to 873 K. The strain-rate effect and temperature sensitivity of the stress-strain response were carefully analyzed. The study also revealed the compression deformation mechanism and the evolution law of the alloy’s microstructure under the combined influence of strain rate and temperature. Furthermore, a dynamic constitutive model was established to accurately describe the plastic flow behavior of the material. The findings indicate that during compression, the copper-magnesium alloy materials exhibit significant strain-rate strengthening and temperature softening effects. These effects result from the combined action of work hardening, strain rate, and temperature softening. When the temperature exceeds 473 K, temperature softening becomes the dominant factor in material deformation, and the elevated temperature can stimulate dynamic recovery and dynamic recrystallization processes. The modified Johnson-Cook model was found to be capable of accurately predicting the plastic flow stress-strain response. These research outcomes provide valuable guidance and references for the safety design and evaluation of the high-speed train pantograph-catenary system during its service.
  • loading
  • [1]
    WU G N, DONG K L, XU Z L, et al. Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks [J]. Railway Engineering Science, 2022, 30(4): 437–467. DOI: 10.1007/s40534-022-00281-2.
    [2]
    MEI G M. Tribological performance of rigid overhead lines against pantograph sliders under DC passage [J]. Tribology International, 2020, 151: 106538. DOI: 10.1016/j.triboint.2020.106538.
    [3]
    SONG Y, LIU Z G, DUAN F C, et al. Wave propagation analysis in high-speed railway catenary system subjected to a moving pantograph [J]. Applied Mathematical Modelling, 2018, 59: 20–38. DOI: 10.1016/j.apm.2018.01.001.
    [4]
    SONG Y, LIU Z G, RØNNQUIST A, et al. Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8196–8206. DOI: 10.1109/TIM.2020.2987457.
    [5]
    SONG Y, ANTUNES P, POMBO J, et al. A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities [J]. Mechanism and Machine Theory, 2020, 152: 103940. DOI: 10.1016/j.mechmachtheory.2020.103940.
    [6]
    雷静果, 刘平, 井晓天, 等. 高速铁路接触线用时效强化铜合金的发展 [J]. 金属热处理, 2005, 30(3): 1–5. DOI: 10.13251/j.issn.0254-6051.2005.03.001.

    LEI J G, LIU P, JING X T, et al. Development of aging-strengthening copper alloy used in contact wire of high-speed railway [J]. Heat Treatment of Metals, 2005, 30(3): 1–5. DOI: 10.13251/j.issn.0254-6051.2005.03.001.
    [7]
    WEI X K, MENG H F, HE J H, et al. Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system [J]. Wear, 2020, 442/443: 203118. DOI: 10.1016/j.wear.2019.203118.
    [8]
    DING T, CHEN G X, BU J, et al. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems [J]. Wear, 2011, 271(9/10): 1629–1636. DOI: 10.1016/j.wear.2010.12.031.
    [9]
    YANG H J, CHEN G X, GAO G Q, et al. Experimental research on the friction and wear properties of a contact strip of a pantograph-catenary system at the sliding speed of 350 km/h with electric current [J]. Wear, 2015, 332/333: 949–955. DOI: 10.1016/j.wear.2014.11.004.
    [10]
    XU Z, SONG Y, LIU Z G. Stress analysis and fatigue life prediction of contact wire located at steady arms in high-speed railway catenary system [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9001212. DOI: 10.1109/TIM.2022.3144747.
    [11]
    吴朋越, 谢水生, 黄国杰. 高速列车用铜合金接触线用材料及其加工工艺 [J]. 稀有金属, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.

    WU P Y, XIE S S, HUANG G J. Materials and process technics of copper contact wires for high-speed train [J]. Chinese Journal of Rare Metals, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.
    [12]
    敬霖, 冯超, 苏兴亚, 等. 高速动车组D2车轮钢的率温耦合变形机理与本构关系 [J]. 科学通报, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.

    JING L, FENG C, SU X Y, et al. Strain rate-temperature coupling deformation mechanism and constitutive relationship of D2 wheel steel for high-speed EMUs [J]. Chinese Science Bulletin, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.
    [13]
    ZHANG T, LU S H, WU Y X, et al. Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum alloy by cellular automaton [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1327–1337. DOI: 10.1016/S1003-6326(17)60154-7.
    [14]
    PECZAK P, LUTON M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization [J]. Acta Metallurgica et Materialia, 1993, 41(1): 59–71. DOI: 10.1016/0956-7151(93)90339-T.
    [15]
    DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta Metallurgica et Materialia, 2001, 49(16): 3163–3175. DOI: 10.1016/S1359-6454(01)00233-6.
    [16]
    WEN D X, LIN Y C, LI H B, et al. Hot deformation behavior and processing map of a typical Ni-based superalloy [J]. Materials Science and Engineering: A, 2014, 591: 183–192. DOI: 10.1016/j.msea.2013.09.049.
    [17]
    LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
    [18]
    LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials & Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
    [19]
    LI J, WENG G J. A micromechanical approach to the stress-strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials [J]. International Journal of Mechanics and Materials in Design, 2013, 9(2): 141–152. DOI: 10.1007/s10999-013-9214-1.
    [20]
    袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.

    YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
    [21]
    LIU Y, ZHANG S, FENG C, et al. Dynamic mechanical behaviors of pearlitic U71MnG rail steel: deformation mechanisms and constitutive model [J]. Materials Science and Engineering: A, 2024, 897: 146353. DOI: 10.1016/j.msea.2024.146353.
    [22]
    申坤, 汪明朴, 郭明星, 等. Cu-0.23%Al2O3弥散强化铜合金的高温变形特性研究 [J]. 金属学报, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.

    SHEN K, WANG M P, GUO M X, et al. Study on high temperature deformation characteristics of Cu-0.23%Al2O3 dispersion-strengthened copper alloy [J]. Acta Metallurgica Sinica, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.
    [23]
    SABIROV I, BARNETT M R, ESTRIN Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy [J]. Scripta Materialia, 2009, 61(2): 181–184. DOI: 10.1016/j.scriptamat.2009.03.032.
    [24]
    JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
    [25]
    LONG M J, JIANG F, SU Y M, et al. Dynamic recrystallization mechanisms and microstructure evolution of a novel Al-Zn-Mg-Cu-Zr alloy by isothermal compression [J]. Journal of Materials Research and Technology, 2024, 33: 1740–1755. DOI: 10.1016/j.jmrt.2024.09.200.
    [26]
    LIU Y, LIU X B, FENG C, et al. Mechanical properties and microstructure of the heterogeneous DZ2 axle steel under high-strain-rate compression at ambient temperature [J]. Journal of Materials Research and Technology, 2023, 26: 8456–8471. DOI: 10.1016/j.jmrt.2023.09.192.
    [27]
    KUBIN L P, MORTENSEN A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues [J]. Scripta Materialia, 2003, 48(2): 119–125. DOI: 10.1016/S1359-6462(02)00335-4.
    [28]
    李定远, 朱志武, 卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系 [J]. 高压物理学报, 2017, 31(6): 761–768. DOI: 10.11858/gywlxb.2017.06.011.

    LI D Y, ZHU Z W, LU Y S. Mechanical properties and constitutive relation for 42CrMo steel under impact load [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761–768. DOI: 10.11858/gywlxb.2017.06.011.
    [29]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, The Netherlands, 1983: 541–548.
    [30]
    周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 111–122. DOI: 10.11883/bzycj-2022-0154.

    ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 111–122. DOI: 10.11883/bzycj-2022-0154.
    [31]
    刘晓燕, 李帅康, 杨西荣. 基于修正J-C和BP神经网络模型的超细晶纯钛动态本构行为 [J]. 稀有金属材料与工程, 2024, 53(2): 409–416. DOI: 10.12442/j.issn.1002-185X.20230015.

    LIU X Y, LI S K, YANG X R. Dynamic constitutive behavior of ultrafine-grained pure titanium based on modified J-C and BP artificial neural network model [J]. Rare Metal Materials and Engineering, 2024, 53(2): 409–416. DOI: 10.12442/j.issn.1002-185X.20230015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (111) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return