• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
CHEN Junhong, ZHANG Fangju, HU Wenjun. Dynamic high-temperature tensile characterization of an iridium alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0050
Citation: CHEN Junhong, ZHANG Fangju, HU Wenjun. Dynamic high-temperature tensile characterization of an iridium alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0050

Dynamic high-temperature tensile characterization of an iridium alloy

doi: 10.11883/bzycj-2025-0050
  • Received Date: 2025-02-16
  • Rev Recd Date: 2025-06-07
  • Available Online: 2025-06-13
  • Iridium alloys have been extensively utilized as structural materials in specific high-temperature applications, attributed to their superior strength and ductility at elevated temperatures. To enhance the understanding of high-speed impacts at elevated temperatures, it is imperative to characterize the mechanical properties of iridium alloys, including their failure response under high strain rates and elevated temperatures. In this study, the conventional split Hopkinson tension bar technique was modified to evaluate the tensile behavior of an iridium alloy at high strain rates and elevated temperatures. A dynamic high-temperature tensile testing technique for thin and flat specimens was established based on the high current heating method. A fixture with a slot was employed, enabling the specimen shoulder to bear the load and transmit it to the gauge section of the specimen. An integrated high current heater equipped with a self-controlled system was utilized to heat the iridium alloy specimen and maintain the desired high-temperature conditions. To prevent unintended heating of the bars, a pair of hollow water-cooled pillow blocks were installed. Moreover, to mitigate rapid cooling of the specimen, the cold contact time was meticulously controlled to be less than 1 ms. To elucidate the dynamic high-temperature properties of the iridium alloy, tensile tests were conducted using this technique at a strain rate of 103 s−1 and at temperatures of room temperature, 600, 900, and 1100 ℃. Experimental results revealed that as the temperature increased from room temperature to 900 ℃, the tensile strength of the iridium alloy decreased by 12%, while its ductility doubled. However, when the temperature was further elevated to 1100 ℃, the tensile strength decreased by 43%, and the ductility increased by a factor of 7.3. Macroscopic and microscopic analyses of the fracture morphologies were conducted to reveal the deformation mechanisms of the iridium alloy. It was found that with increasing temperature, the failure mode of the iridium alloy transitioned from predominantly intergranular fracture to plastic deformation and granular fracture. The dynamic fracture behavior of iridium alloy at high temperatures is governed by the competition between grain-boundary failure and granular softening.
  • loading
  • [1]
    艾园林, 白书欣, 朱利安, 等. 铱的合金化改性研究现状 [J]. 材料导报, 2018, 32(S1): 405–409.

    AI Y L, BAI S X, ZHU L A, et al. Research status of alloying modification of iridium [J]. Materials Review, 2018, 32(S1): 405–409.
    [2]
    李增峰, 张晗亮, 汤慧萍, 等. 铱合金的高温氧化行为 [J]. 金属热处理, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.

    LI Z F, ZHANG H L, TANG H P, et al. Oxidating behavior of iridium alloys at high temperature [J]. Heat Treatment of Metals, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.
    [3]
    方镇, 王鑫, 张毅勇, 等. 铱及铱合金涂层的研究现状与展望 [J]. 稀有金属, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.

    FANG Z, WANG X, ZHANG Y Y, et al. Research status and prospects of Ir and Ir-alloy coatings [J]. Chinese Journal of Rare Metals, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.
    [4]
    潘新东, 魏燕, 蔡宏中, 等. 铱及铱基合金多元化研究进展 [J]. 稀有金属材料与工程, 2018, 47(2): 711–716.

    PAN X D, WEI Y, CAI H Z, et al. Progress in research on the diversification of iridium and iridium based alloys [J]. Rare Metal Materials and Engineering, 2018, 47(2): 711–716.
    [5]
    向长淑, 葛渊, 张晗亮, 等. 耐超高温铱合金强韧化技术研究进展 [J]. 材料导报, 2009, 23(7): 7–10.

    XIANG C S, GE Y, ZHANG H L, et al. Research progress in strengthening and toughening technology of iridium alloys for ultra-high temperature application [J]. Materials Review, 2009, 23(7): 7–10.
    [6]
    庄严, 陈敬超, 吕连灏. 第一性原理研究铱基高温合金增韧机理 [J]. 材料导报, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.

    ZHUANG Y, CHEN J C, LÜ L H. First-principles study on toughening mechanisms of iridium-base super alloy [J]. Materials Review, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.
    [7]
    李增峰, 葛渊, 李爱君, 等. Ir-W-Th铱合金的压力加工硬化 [J]. 金属热处理, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.

    LI Z F, GE Y, LI A J, et al. Work hardening of Ir-W-Th iridium alloy [J]. Heat Treatment of Metals, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.
    [8]
    吴胜娜, 罗洪义, 武伟名, 等. 再入过程中的同位素热源可靠性评估 [J]. 原子能科学技术, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.

    WU S N, LUO H Y, WU W M, et al. Reliability evaluation of radioisotope heat unit in reentry process [J]. Atomic Energy Science and Technology, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.
    [9]
    李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.

    LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.
    [10]
    张方举, 谢若泽, 胡文军, 等. 一种改进的金属材料的高温动态拉伸实验技术 [J]. 实验力学, 2011, 26(6): 750–754.

    ZHANG F J, XIE R Z, HU W J, et al. An improved high temperature dynamical tensile experimental technique for metal materials [J]. Journal of Experimental Mechanics, 2011, 26(6): 750–754.
    [11]
    SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature testing of an iridium alloy in compression at high-strain rates [J]. Strain, 2014, 50(6): 539–546. DOI: 10.1111/str.12100.
    [12]
    SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature tensile characterization of an iridium alloy with Kolsky tension bar techniques [J]. Journal of Dynamic Behavior of Materials, 2015, 1(3): 290–298. DOI: 10.1007/s40870-015-0022-6.
    [13]
    李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.

    LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
    [14]
    ZHANG C, GUAN T H, REN T F, et al. Influences of SiC infiltration and coating on compressive mechanical behaviours of 2DC/SiC composites up to 1600 ℃ at wide-ranging strain rates [J]. Journal of the European Ceramic Society, 2022, 42(9): 3787–3801. DOI: 10.1016/j.jeurceramsoc.2022.02.042.
    [15]
    WANG J J, GUO W G, LI P H, et al. Dynamic tensileproperties of a single crystal nickel-base superalloy at hightemperatures measured with an improved SHTB technique [J]. Materials Science andEngineering: A, 2016, 670: 1–8. DOI: 10.1016/j.msea.2016.06.002.
    [16]
    HEATHERLY L, GEORGE E P. Grain-boundary segregation of impurities in iridium and effects on mechanical properties [J]. Acta Materialia, 2001, 49(2): 289–298. DOI: 10.1016/S1359-6454(00)00313-X.
    [17]
    MCKAMEY C G, GEORGE E P, LEE E H, et al. Impurity effects on high-temperature tensile ductility of iridium alloys at high strain rate [J]. Scripta Materialia, 1999, 42(1): 9–15. DOI: 10.1016/S1359-6462(99)00339-5.
    [18]
    李奇颖, 张健康, 付全, 等. 应变速率和温度对Ir-W-Th合金力学性能的影响 [J]. 贵金属, 2024, 45(4): 22–27, 36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.

    LI Q Y, ZHANG J K, FU Q, et al. Effects of strain rate and temperature on the mechanical properties of Ir-W-Th alloy [J]. Precious Metals, 2024, 45(4): 22–27, 36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.
    [19]
    郑磊. 奥氏体不锈钢A304晶界特征与晶界强度的关系[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    ZHENG L. Relationship between grain boundary characters and grain boundary strength of austenitic stainless steel A304 [D]. Harbin: Harbin Institute of Technology, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (147) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return