• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
SUN Yong, JIANG Zhaoxiu, WANG Yonggang. Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0058
Citation: SUN Yong, JIANG Zhaoxiu, WANG Yonggang. Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0058

Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable

doi: 10.11883/bzycj-2025-0058
  • Received Date: 2025-02-24
  • Rev Recd Date: 2025-04-11
  • Available Online: 2025-04-16
  • To address the fracture problem of dynamic submarine cables and their protective sheaths caused by friction and collision with wind turbine platforms under harsh sea conditions, a multi-impact resistant composite protective layer was designed using EVA foam and rubber as the main materials, which possess high elasticity and excellent cushioning properties.Mechanical property tests were conducted on EVA foam materials with various relative densities under different loading conditions using a universal testing machine and drop hammer. Energy absorption efficiency, densification strain, plateau stress and maximum specific energy absorption were introduced to characterize the mechanical properties of EVA foam. The effects of relative density, strain rate and repeated loading on the energy absorption characteristics of EVA foam were revealed.Based on the matching relationship between the energy absorption per unit volume of EVA foam and the kinetic energy of dynamic submarine cables to be absorbed, the optimal thickness of the protective layer was determined, and composite protective layer specimens were fabricated. Subsequently, drop hammer impact tests were performed to compare the cushioning and energy absorption characteristics of the composite protective layer with other materials, preliminarily verifying its high energy absorption efficiency. Further drop hammer impact tests were conducted to investigate the effects of impact energy and loading cycles on the cushioning and energy absorption characteristics of the composite protective layer. The experimental results showed that: 1) Under single impact, the peak force and maximum displacement of the composite protective layer showed a linear positive correlation with the drop hammer mass and impact velocity, with energy absorption efficiency reaching 85 %; 2) Under multiple impacts, the mechanical properties of the composite protective layer exhibited remarkable stability - the maximum displacement in the fourth impact increased by only 5.5 % compared to the first impact, with fluctuations in energy absorption value and instantaneous rebound rate remaining below 5 %. The composite protective layer demonstrates unique mechanical properties that provide effective long-term protection for dynamic submarine cables under harsh marine conditions.
  • loading
  • [1]
    林开泉, 王红霞, 刘红亮, 等. 海底光缆锚害的有限元分析 [J]. 电线电缆, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.

    LIN K Q, WANG H X, LIU H L, et al. Finite element analysis of anchorage damage of submarine optical cable [J]. Electic Wire & Cable, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.
    [2]
    夏峰, 陈凯, 张永明. 海底电力电缆铠装结构机械强度分析及设计 [J]. 电线电缆, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.

    XIA F, CHEN K, ZHANG Y M. Mechanical strength analysis and design of submarine power cable armored structure [J]. Electic Wire & Cable, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.
    [3]
    钟科星, 丁乐声, 张聪, 等. 基于神经网络的风电海缆弯曲限制器优化设计 [J]. 海洋工程装备与技术, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12.

    ZHONG K X, DING L S, ZHANG C, et al. Optimization design of wind power submarine cable bending limiter based on neural network [J]. Ocean Engineering Equipment and Technology, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12.
    [4]
    林峰, 李斯魏, 薛驰, 等. 海上风电海缆风机端弯曲保护装置及安装技术研究 [J]. 机电工程技术, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003.

    LIN F, LI S W, XUE C, et al. Research on bending protection device and installation technology of offshore wind power submarine cable fan end [J]. Mechanical & Electrical Engineering Technology, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003.
    [5]
    董吴磊, 杨华勇, 郭朝阳, 等. 基于材料非线性的两种海缆弯曲限制器的有限元分析与试验验证 [J]. 海洋技术学报, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014.

    DONG W L, YANG H Y, GUO C Y, et al. Finite element analysis and experimental verification of two kinds of submarine cable bending limiters based on material nonlinearity [J]. Ocean Technology, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014.
    [6]
    邓俊儒, 张青云. 基于多种桩型的海缆保护系统研究 [J]. 南方能源建设, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.

    DENG J R, ZHANG Q Y. Research on submarine cable protection system based on multiple pile types [J]. Southern Energy Construction, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.
    [7]
    周忠旭. 固定式风电平台下的悬挂海缆保护设计与分析[D]. 大连: 大连理工大学, 2020: 23–25.

    ZHOU Z X. Design and analysis of suspended submarine cable protection under fixed wind power platform[D]. Dalian : Dalian University of Technology, 2020: 23–25.
    [8]
    RUMIANEK P, DOBOSZ T, NOWAK R, et al. Static mechanical properties of expanded polypropylene crushable foam [J]. Materials, 2021, 14(2): 249–264. DOI: 10.3390/ma14020249.
    [9]
    CHEN H, SUN D, GAO L, et al. Mechanical behavior of closed-cell ethylene-vinyl acetate foam under compression [J]. Polymers, 2024, 16(1): 34. DOI: 10.3390/polym16010034.
    [10]
    LIU D S, CHEN Z H, TSAI C Y, et al. Compressive mechanical property analysis of EVA foam: Its buffering effects at different impact velocities [J]. Journal of Mechanics, 2017, 33(4): 435–441. DOI: 10.1017/jmech.2016.98.
    [11]
    LAM C, KWAN J S H, Su Y, et al. Performance of ethylene-vinyl acetate foam as cushioning material for rigid debris-resisting barriers [J]. Landslides, 2018, 15: 1779–1786. DOI: 10.1007/s10346-018-0987-z.
    [12]
    AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI: 10.1016/S0734-743X(00)00060-9.
    [13]
    孙德强, 高璐璐, 刘晓晨, 等. 闭孔EVA泡沫类静态缓冲性能的研究 [J]. 包装工程, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.

    SUN D Q, Gao L L, LIU X C, et al. Study on static cushioning properties of closed-cell EVA foam [J]. Packaging Engineering, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.
    [14]
    LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 457–466. DOI: 10.1016/j.acme.2016.12.009.
    [15]
    ELLIOTT J A, WINDLE A H, HOBDELL J R, et al. In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography [J]. Journal of Materials Science, 2002, 37(8): 1547–1555. DOI: 10.1023/A:1014920902712.
    [16]
    TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
    [17]
    LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519.
    [18]
    SHIVAKUMAR N D, DEB A. Dependence of the mechanical properties of rigid PU foam on density [J]. Journal of Reinforced Plastics and Composites, 2022, 41(9−10): 355–363. DOI: 10.1177/07316844211051737.
    [19]
    苏兴亚, 周伦, 敬霖, 等. 软质聚氨酯泡沫的动态压缩力学性能和本构模型 [J]. 爆炸与冲击, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201.

    SU X Y, ZHOU L, JIN L, et al. Dynamic compressive mechanical properties and constitutive model of soft polyurethane foam [J]. Explosion and Shock Waves, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201.
    [20]
    DEL ROSSO S, IANNUCCI L. On the compressive response of polymeric cellular materials [J]. Materials, 2020, 13(2): 457. DOI: 10.3390/ma13020457.
    [21]
    张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.

    ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum [J]. Explosion and Shock Waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.
    [22]
    吴江, 王根伟, 李志强. 应变率与相对密度对聚氨酯泡沫压缩力学行为的影响 [J]. 科学技术与工程, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.

    WU J, WANG G W, LI Z Q. Effect of strain rate and relative density on compressive mechanical behavior of polyurethane foams [J]. Science Technology and Engineering, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
    [23]
    胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应 [J]. 爆炸与冲击, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6.

    HU S S, WANG W, PAN Y, et al. Strain rate effect of foam materials [J]. Explosion and Shock Waves, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6.
    [24]
    范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟 [J]. 爆炸与冲击, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.

    FAN Z G, CHEN C Q, WAN Q. Finite element simulation on the rate-dependent properties of aluminum foams [J]. Explosion and Shock Waves, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.
    [25]
    BOON P C, ANATOLI K, ALEKSANDR K, et al. Enhancing dynamic impact performance and cushioning of EVA copolymer foams with thermoplastic elastomers [J]. Materials Today Communications, 2024, 38: 107888. DOI: 10.1016/j.mtcomm.2023.107888.
    [26]
    ZHU P, MEUCHELBÖCK J, QIU C, et al. Fatigue behaviors and cellular damages of bead-welded foam of poly(ether-b-amide) under cyclic compression [J]. International Journal of Fatigue, 2025, 194: 108841. DOI: 10.1016/j.ijfatigue.2025.108841.
    [27]
    杨宝. SHPB实验中泡沫铝细观结构变形特征与应变率效应机理研究[D]. 广州: 华南理工大学, 2012: 82–85.

    YANG B. Study on deformation characteristics and strain rate effect mechanism of meso-structure of aluminum foam in SHPB experiment[D]. Guangzhou : South China University of Technology, 2012: 82–85.
    [28]
    BASTAWROS A F, EVANS A G. Deformation heterogeneity in cellular Al alloys [J]. Advanced Engineering Materials, 2000, 2(4): 210–214. DOI: 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(33)  / Tables(1)

    Article Metrics

    Article views (75) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return