| Citation: | WANG Qiang, WANG Jianjun, ZHAO Dan, WANG Zhihua. Strain rate effect and temperature effect of CoCrNi-based medium entropy alloy with interstitial C doping[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0087 |
| [1] |
乔珺威, 张勇, 王志华. 高熵合金及其性能 [M]. 北京: 科学出版社, 2025.
|
| [2] |
ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
|
| [3] |
陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
|
| [4] |
WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5.
|
| [5] |
WANG J J, GUO H X, JIAO Z M, et al. Coupling effects of temperature and strain rate on the mechanical behavior and microstructure evolution of a powder-plasma-arc additive manufactured high-entropy alloy with multi-heterogeneous microstructures [J]. Acta Materialia, 2024, 276: 120147. DOI: 10.1016/j.actamat.2024.120147.
|
| [6] |
SCOTT C, REMY B, COLLET J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels [J]. International Journal of Materials Research, 2011, 102(5): 538–549. DOI: 10.3139/146.110508.
|
| [7] |
SHEN Y F, DONG X X, SONG X T, et al. Carbon content-tuned martensite transformation in low-alloy TRIP steels [J]. Scientific Reports, 2019, 9(1): 7559. DOI: 10.1038/s41598-019-44105-6.
|
| [8] |
ZHOU J H, SHEN Y F, JIA N. Strengthening mechanisms of reduced activation ferritic/martensitic steels: a review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(3): 335–348. DOI: 10.1007/s12613-020-2121-1.
|
| [9] |
LI Z M, RAABE D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69(11): 2099–2106. DOI: 10.1007/s11837-017-2540-2.
|
| [10] |
VENKATALAXMI A, PADMAVATHI B S, AMARANATH T. A general solution of unsteady Stokes equations [J]. Fluid Dynamics Research, 2004, 35(3): 229–236. DOI: 10.1016/j.fluiddyn.2004.06.001.
|
| [11] |
WANG Z W, BAKER I, GUO W, et al. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2017, 126: 346–360. DOI: 10.1016/j.actamat.2016.12.074.
|
| [12] |
XIONG F, FU R D, LI Y J, et al. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing [J]. Materials Science and Engineering: A, 2020, 787: 139472. DOI: 10.1016/j.msea.2020.139472.
|
| [13] |
WANG Z W, BAKER I, CAI Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228–239. DOI: 10.1016/j.actamat.2016.08.072.
|
| [14] |
KLIMOVA M V, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy [J]. Materials Science and Engineering: A, 2019, 740/741: 201–210. DOI: 10.1016/j.msea.2018.09.113.
|
| [15] |
LI Z M, TASAN C C, SPRINGER H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Scientific Reports, 2017, 7: 40704. DOI: 10.1038/srep40704.
|
| [16] |
CHEN L B, WEI R, TANG K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility [J]. Materials Science and Engineering: A, 2018, 716: 150–156. DOI: 10.1016/j.msea.2018.01.045.
|
| [17] |
WANG M M, LI Z M, RAABE D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Materialia, 2018, 147: 236–246. DOI: 10.1016/j.actamat.2018.01.036.
|
| [18] |
LI Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Materialia, 2019, 164: 400–412. DOI: 10.1016/j.actamat.2018.10.050.
|
| [19] |
KLIMOVA M, SHAYSULTANOV D, SEMENYUK A, et al. Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys [J]. Journal of Alloys and Compounds, 2021, 851: 156839. DOI: 10.1016/j.jallcom.2020.156839.
|
| [20] |
王强, 张团卫, 王建军, 等. 高速Taylor冲击下CoCrNiSi0.3C0.048中熵合金变形微观结构的演变机制 [J]. 固体力学学报, 2023, 44(6): 755–770. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.040.
WANG Q, ZHANG T W, WANG J J, et al. Evolution mechanisms of deformed microstructure in CoCrNiSi0.3C0.048 medium-entropy alloy under high-velocity Taylor impact [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 755–770. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.040.
|
| [21] |
TSAI C W, LEE C, LIN P T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy [J]. International Journal of Plasticity, 2019, 122: 212–224. DOI: 10.1016/j.ijplas.2019.07.003.
|
| [22] |
HALIM H, WILKINSON M S, NIEWCZAS M. The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy [J]. Acta Materialia, 2007, 55(12): 4151–4160. DOI: 10.1016/j.actamat.2007.03.007.
|
| [23] |
HECTOR L G, ZAVATTIERI P D. Nucleation and propagation of Portevin-Le Châtelier bands in austenitic steel with twinning induced plasticity [M]//PROULX T. Experimental and Applied Mechanics, Volume 6. New York: River Publishers, 2011: 855-863. DOI: 10.1007/978-1-4419-9792-0_118.
|
| [24] |
RIZZI E, HÄHNER P. On the Portevin-Le Chatelier effect: theoretical modeling and numerical results [J]. International Journal of Plasticity, 2004, 20(1): 121–165. DOI: 10.1016/S0749-6419(03)00035-4.
|
| [25] |
ZAVATTIERI P D, SAVIC V, HECTOR JR L G, et al. Spatio-temporal characteristics of the Portevin-Le Châtelier effect in austenitic steel with twinning induced plasticity [J]. International Journal of Plasticity, 2009, 25(12): 2298–2330. DOI: 10.1016/j.ijplas.2009.02.008.
|
| [26] |
TONG C J, CHEN M R, YEH J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metallurgical and Materials Transactions A, 2005, 36(5): 1263–1271. DOI: 10.1007/s11661-005-0218-9.
|
| [27] |
OTTO F, DLOUHÝ A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743–5755. DOI: 10.1016/j.actamat.2013.06.018.
|
| [28] |
CARROLL R, LEE C, TSAI C W, et al. Experiments and model for serration statistics in low-entropy, medium-entropy and high-entropy alloys [J]. Scientific Reports, 2015, 5: 16997. DOI: 10.1038/srep16997.
|
| [29] |
FANG S C, CHEN W P, FU Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Materials and Design, 2014, 54: 973–979. DOI: 10.1016/j.matdes.2013.08.099.
|
| [30] |
LI J B, GAO B, TANG S, et al. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2018, 747: 571–579. DOI: 10.1016/j.jallcom.2018.02.332.
|
| [31] |
NEMAT-NASSER S, GUO W G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials, 2003, 35(11): 1023–1047. DOI: 10.1016/S0167-6636(02)00323-X.
|
| [32] |
NEMAT-NASSER S, GUO W G, CHENG J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium [J]. Acta Materialia, 1999, 47(13): 3705–3720. DOI: 10.1016/S1359-6454(99)00203-7.
|
| [33] |
NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. DOI: 10.1016/S0167-6636(01)00063-1.
|
| [34] |
KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. DOI: 10.1016/S0167-6636(97)00036-7.
|
| [35] |
WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. DOI: 10.1016/j.ijplas.2014.08.017.
|
| [36] |
王建军. 典型金属塑性流动中反常应力峰及其本构关系 [D]. 西安: 西北工业大学, 2017. DOI: 10.7666/d.D01601051.
WANG J J. Anomalous stress peak in the plastic flow of typical metals and its constitutive model[D]. Xi’an: Northwestern Polytechnical University, 2017. DOI: 10.7666/d.D01601051.
|
| [37] |
NEMAT-NASSER S, GUO W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling [J]. Mechanics of Materials, 2005, 37(2/3): 379–405. DOI: 10.1016/j.mechmat.2003.08.017.
|
| [38] |
NEMAT-NASSER S, GUO W G. High strain-rate response of commercially pure vanadium [J]. Mechanics of Materials, 2000, 32(4): 243–260. DOI: 10.1016/S0167-6636(99)00056-3.
|
| [39] |
GILAT A, WU X R. Plastic deformation of 1020 steel over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1997, 13(6/7): 611–632. DOI: 10.1016/S0749-6419(97)00028-4.
|
| [40] |
LEE M H, KIM J H, CHOI B K, et al. Mechanical properties and dynamic strain aging behavior of Zr–1.5Nb–0.4Sn–0.2Fe alloy [J]. Journal of Alloys and Compounds, 2007, 428(1/2): 99–105. DOI: 10.1016/j.jallcom.2006.03.076.
|
| [41] |
PENG K P, QIAN K W, CHEN W Z. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel [J]. Materials Science and Engineering: A, 2004, 379(1/2): 372–377. DOI: 10.1016/j.msea.2004.03.004.
|
| [42] |
NANDY T K, FENG Q, POLLOCK T M. Elevated temperature deformation and dynamic strain aging in polycrystalline RuAl alloys [J]. Intermetallics, 2003, 11(10): 1029–1038. DOI: 10.1016/S0966-9795(03)00134-1.
|
| [43] |
SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals [J]. Progress in Materials Science, 2017, 88: 186–231. DOI: 10.1016/j.pmatsci.2017.04.004.
|
| [44] |
吴涛. 淬火碳钢温变形流变行为与微观组织演变研究 [D]. 秦皇岛: 燕山大学, 2013.
WU T. Investigations of warm deformation behavior and microstructure evolution of initially quenched carbon steels [D]. Qinhuangdao: Yanshan University, 2013.
|
| [45] |
YANAGIDA A, YANAGIMOTO J. A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve [J]. Journal of Materials Processing Technology, 2004, 151(1/2/3): 33–38. DOI: 10.1016/j.jmatprotec.2004.04.007.
|
| [46] |
LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
|
| [47] |
GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74–78. DOI: 10.1016/j.intermet.2013.03.018.
|
| [48] |
袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
|
| [49] |
VAN DEN BEUKEL A, KOCKS U F. The strain dependence of static and dynamic strain-aging [J]. Acta Metallurgica, 1982, 30(5): 1027–1034. DOI: 10.1016/0001-6160(82)90211-5.
|
| [50] |
NAKADA Y, KEH A S. Serrated flow in Ni-C alloys [J]. Acta Metallurgica, 1970, 18(4): 437–443. DOI: 10.1016/0001-6160(70)90129-X.
|
| [51] |
MCCORMIGK P G. A model for the Portevin-Le Chatelier effect in substitutional alloys [J]. Acta Metallurgica, 1972, 20(3): 351–354. DOI: 10.1016/0001-6160(72)90028-4.
|
| [52] |
LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y.
|
| [53] |
CHEN J, YAO Z H, WANG X B, et al. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy [J]. Materials Chemistry and Physics, 2018, 210: 136–145. DOI: 10.1016/j.matchemphys.2017.08.011.
|
| [54] |
WANG Z W, LU W J, RAABE D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. Journal of Alloys and Compounds, 2019, 781: 734–743. DOI: 10.1016/j.jallcom.2018.12.061.
|
| [55] |
ZHANG L J, YU P F, FAN J T, et al. Investigating the micro and nanomechanical properties of CoCrFeNi-CX high-entropy alloys containing eutectic carbides [J]. Materials Science and Engineering: A, 2020, 796: 140065. DOI: 10.1016/j.msea.2020.140065.
|
| [56] |
KLIMOVA M V, SEMENYUK A O, SHAYSULTANOV D G, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys [J]. Journal of Alloys and Compounds, 2019, 811: 152000. DOI: 10.1016/j.jallcom.2019.152000.
|
| [57] |
HAN Y, LI H B, FENG H, et al. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. Journal of Materials Science and Technology, 2021, 65: 210–215. DOI: 10.1016/j.jmst.2020.04.072.
|
| [58] |
STEPANOV N D, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2017, 693: 394–405. DOI: 10.1016/j.jallcom.2016.09.208.
|
| [59] |
MEYERS M A, VÖHRINGER O, LUBARDA V A. The onset of twinning in metals: a constitutive description [J]. Acta Materialia, 2001, 49(19): 4025–4039. DOI: 10.1016/S1359-6454(01)00300-7.
|
| [60] |
WANG L, BEI H, LI T L, et al. Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals [J]. Scripta Materialia, 2011, 65(3): 179–182. DOI: 10.1016/j.scriptamat.2011.03.036.
|
| [61] |
WU Y, ZHANG F, YUAN X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. Journal of Materials Science & Technology, 2021, 62: 214–220. DOI: 10.1016/j.jmst.2020.06.018.
|
| [62] |
BU Y Q, WU Y, LEI Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Materials Today, 2021, 46: 28–34. DOI: 10.1016/j.mattod.2021.02.022.
|
| [63] |
ZHANG R P, ZHAO S T, DING J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581(7808): 283–287. DOI: 10.1038/s41586-020-2275-z.
|
| [64] |
CHEN X F, WANG Q, CHENG Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712–716. DOI: 10.1038/s41586-021-03428-z.
|
| [65] |
COTTRELL A H, JASWON M A. Distribution of solute atoms round a slow dislocation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1949, 199(1056): 104–114. DOI: 10.1098/rspa.1949.0128.
|
| [66] |
MCCORMICK P G. The Portevin-Le Chatelier effect in a pressurized low carbon steel [J]. Acta Metallurgica, 1973, 21(7): 873–878. DOI: 10.1016/0001-6160(73)90144-2.
|
| [67] |
PINK E, KUMAR S. Patterns of serrated flow in a low-carbon steel [J]. Materials Science and Engineering: A, 1995, 201(1/2): 58–64. DOI: 10.1016/0921-5093(95)09772-4.
|
| [68] |
SLEESWYK A W. Slow strain-hardening of ingot iron [J]. Acta Metallurgica, 1958, 6(9): 598–603. DOI: 10.1016/0001-6160(58)90101-9.
|
| [69] |
YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: testing and microstructural based constitutive modeling [J]. International Journal of Plasticity, 2021, 136: 102865. DOI: 10.1016/j.ijplas.2020.102865.
|