• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
WANG Qiang, WANG Jianjun, ZHAO Dan, WANG Zhihua. Strain rate effect and temperature effect of CoCrNi-based medium entropy alloy with interstitial C doping[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0087
Citation: WANG Qiang, WANG Jianjun, ZHAO Dan, WANG Zhihua. Strain rate effect and temperature effect of CoCrNi-based medium entropy alloy with interstitial C doping[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0087

Strain rate effect and temperature effect of CoCrNi-based medium entropy alloy with interstitial C doping

doi: 10.11883/bzycj-2025-0087
  • Received Date: 2025-03-19
  • Rev Recd Date: 2025-08-18
  • Available Online: 2025-08-19
  • To further explore the influence of interstitial C atom on the strain rate effect and temperature effect of CoCrNi-based medium-entropy alloy, the compression mechanical behavior, microstructure evolution and deformation mechanism of CoCrNiSi0.3C0.048 medium-entropy alloy were systematically studied at a wide temperature and strain rate range. The investigated alloy is composed of face-centered cubic (FCC) matrix and three-level precipitate microstructure, i.e. the primary Cr23C6 carbides (2−10 μm), the secondary SiC precipitates (200−500 nm), and the tertiary SiC precipitates (~50 nm). The results show that the serrated flow phenomenon is observed on the true stress-strain curve of the alloy at 400 ℃, and the amplitude of the serrations decreases gradually with the increase of strain and ultimately vanishes. In addition, the abnormal stress peak (the 3rd-type strain aging phenomenon) appears on the curve of the quasi-static flow stress with temperature, but at high strain rate, the abnormal stress peak disappears. Through the analysis of the characterization of the deformed microstructure, it is speculated that the main reason for the phenomenon of 3rd-type strain aging under quasi-static conditions may be the existence of interstitial C atoms. During the process of continuous plastic deformation and development, a series of mixed structures similar to heterogeneous structures are generated, which are composed of dense dislocation cells, micro bands, stack faults, dislocation clusters and deformation twins. These mixed structures intensify the interaction between interstitial atoms and moving dislocation, and then pin the dislocation, which results in dynamic strain aging phenomenon occurs. The reason why the 3rd-type strain aging does not appear under dynamic conditions may be that the solute atoms move slower than the dislocation. The dislocation cannot be pinned in time. In addition, the precipitation of a large number of nanoscale SiC precipitates weakens the "pinning" effect of interstitial atoms under dynamic loading.
  • loading
  • [1]
    乔珺威, 张勇, 王志华. 高熵合金及其性能 [M]. 北京: 科学出版社, 2025.
    [2]
    ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
    [3]
    陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.

    CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
    [4]
    WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5.
    [5]
    WANG J J, GUO H X, JIAO Z M, et al. Coupling effects of temperature and strain rate on the mechanical behavior and microstructure evolution of a powder-plasma-arc additive manufactured high-entropy alloy with multi-heterogeneous microstructures [J]. Acta Materialia, 2024, 276: 120147. DOI: 10.1016/j.actamat.2024.120147.
    [6]
    SCOTT C, REMY B, COLLET J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels [J]. International Journal of Materials Research, 2011, 102(5): 538–549. DOI: 10.3139/146.110508.
    [7]
    SHEN Y F, DONG X X, SONG X T, et al. Carbon content-tuned martensite transformation in low-alloy TRIP steels [J]. Scientific Reports, 2019, 9(1): 7559. DOI: 10.1038/s41598-019-44105-6.
    [8]
    ZHOU J H, SHEN Y F, JIA N. Strengthening mechanisms of reduced activation ferritic/martensitic steels: a review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(3): 335–348. DOI: 10.1007/s12613-020-2121-1.
    [9]
    LI Z M, RAABE D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69(11): 2099–2106. DOI: 10.1007/s11837-017-2540-2.
    [10]
    VENKATALAXMI A, PADMAVATHI B S, AMARANATH T. A general solution of unsteady Stokes equations [J]. Fluid Dynamics Research, 2004, 35(3): 229–236. DOI: 10.1016/j.fluiddyn.2004.06.001.
    [11]
    WANG Z W, BAKER I, GUO W, et al. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2017, 126: 346–360. DOI: 10.1016/j.actamat.2016.12.074.
    [12]
    XIONG F, FU R D, LI Y J, et al. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing [J]. Materials Science and Engineering: A, 2020, 787: 139472. DOI: 10.1016/j.msea.2020.139472.
    [13]
    WANG Z W, BAKER I, CAI Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228–239. DOI: 10.1016/j.actamat.2016.08.072.
    [14]
    KLIMOVA M V, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy [J]. Materials Science and Engineering: A, 2019, 740/741: 201–210. DOI: 10.1016/j.msea.2018.09.113.
    [15]
    LI Z M, TASAN C C, SPRINGER H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Scientific Reports, 2017, 7: 40704. DOI: 10.1038/srep40704.
    [16]
    CHEN L B, WEI R, TANG K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility [J]. Materials Science and Engineering: A, 2018, 716: 150–156. DOI: 10.1016/j.msea.2018.01.045.
    [17]
    WANG M M, LI Z M, RAABE D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Materialia, 2018, 147: 236–246. DOI: 10.1016/j.actamat.2018.01.036.
    [18]
    LI Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Materialia, 2019, 164: 400–412. DOI: 10.1016/j.actamat.2018.10.050.
    [19]
    KLIMOVA M, SHAYSULTANOV D, SEMENYUK A, et al. Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys [J]. Journal of Alloys and Compounds, 2021, 851: 156839. DOI: 10.1016/j.jallcom.2020.156839.
    [20]
    王强, 张团卫, 王建军, 等. 高速Taylor冲击下CoCrNiSi0.3C0.048中熵合金变形微观结构的演变机制 [J]. 固体力学学报, 2023, 44(6): 755–770. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.040.

    WANG Q, ZHANG T W, WANG J J, et al. Evolution mechanisms of deformed microstructure in CoCrNiSi0.3C0.048 medium-entropy alloy under high-velocity Taylor impact [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 755–770. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.040.
    [21]
    TSAI C W, LEE C, LIN P T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy [J]. International Journal of Plasticity, 2019, 122: 212–224. DOI: 10.1016/j.ijplas.2019.07.003.
    [22]
    HALIM H, WILKINSON M S, NIEWCZAS M. The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy [J]. Acta Materialia, 2007, 55(12): 4151–4160. DOI: 10.1016/j.actamat.2007.03.007.
    [23]
    HECTOR L G, ZAVATTIERI P D. Nucleation and propagation of Portevin-Le Châtelier bands in austenitic steel with twinning induced plasticity [M]//PROULX T. Experimental and Applied Mechanics, Volume 6. New York: River Publishers, 2011: 855-863. DOI: 10.1007/978-1-4419-9792-0_118.
    [24]
    RIZZI E, HÄHNER P. On the Portevin-Le Chatelier effect: theoretical modeling and numerical results [J]. International Journal of Plasticity, 2004, 20(1): 121–165. DOI: 10.1016/S0749-6419(03)00035-4.
    [25]
    ZAVATTIERI P D, SAVIC V, HECTOR JR L G, et al. Spatio-temporal characteristics of the Portevin-Le Châtelier effect in austenitic steel with twinning induced plasticity [J]. International Journal of Plasticity, 2009, 25(12): 2298–2330. DOI: 10.1016/j.ijplas.2009.02.008.
    [26]
    TONG C J, CHEN M R, YEH J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metallurgical and Materials Transactions A, 2005, 36(5): 1263–1271. DOI: 10.1007/s11661-005-0218-9.
    [27]
    OTTO F, DLOUHÝ A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743–5755. DOI: 10.1016/j.actamat.2013.06.018.
    [28]
    CARROLL R, LEE C, TSAI C W, et al. Experiments and model for serration statistics in low-entropy, medium-entropy and high-entropy alloys [J]. Scientific Reports, 2015, 5: 16997. DOI: 10.1038/srep16997.
    [29]
    FANG S C, CHEN W P, FU Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J]. Materials and Design, 2014, 54: 973–979. DOI: 10.1016/j.matdes.2013.08.099.
    [30]
    LI J B, GAO B, TANG S, et al. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2018, 747: 571–579. DOI: 10.1016/j.jallcom.2018.02.332.
    [31]
    NEMAT-NASSER S, GUO W G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials, 2003, 35(11): 1023–1047. DOI: 10.1016/S0167-6636(02)00323-X.
    [32]
    NEMAT-NASSER S, GUO W G, CHENG J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium [J]. Acta Materialia, 1999, 47(13): 3705–3720. DOI: 10.1016/S1359-6454(99)00203-7.
    [33]
    NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. DOI: 10.1016/S0167-6636(01)00063-1.
    [34]
    KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. DOI: 10.1016/S0167-6636(97)00036-7.
    [35]
    WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. DOI: 10.1016/j.ijplas.2014.08.017.
    [36]
    王建军. 典型金属塑性流动中反常应力峰及其本构关系 [D]. 西安: 西北工业大学, 2017. DOI: 10.7666/d.D01601051.

    WANG J J. Anomalous stress peak in the plastic flow of typical metals and its constitutive model[D]. Xi’an: Northwestern Polytechnical University, 2017. DOI: 10.7666/d.D01601051.
    [37]
    NEMAT-NASSER S, GUO W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling [J]. Mechanics of Materials, 2005, 37(2/3): 379–405. DOI: 10.1016/j.mechmat.2003.08.017.
    [38]
    NEMAT-NASSER S, GUO W G. High strain-rate response of commercially pure vanadium [J]. Mechanics of Materials, 2000, 32(4): 243–260. DOI: 10.1016/S0167-6636(99)00056-3.
    [39]
    GILAT A, WU X R. Plastic deformation of 1020 steel over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1997, 13(6/7): 611–632. DOI: 10.1016/S0749-6419(97)00028-4.
    [40]
    LEE M H, KIM J H, CHOI B K, et al. Mechanical properties and dynamic strain aging behavior of Zr–1.5Nb–0.4Sn–0.2Fe alloy [J]. Journal of Alloys and Compounds, 2007, 428(1/2): 99–105. DOI: 10.1016/j.jallcom.2006.03.076.
    [41]
    PENG K P, QIAN K W, CHEN W Z. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel [J]. Materials Science and Engineering: A, 2004, 379(1/2): 372–377. DOI: 10.1016/j.msea.2004.03.004.
    [42]
    NANDY T K, FENG Q, POLLOCK T M. Elevated temperature deformation and dynamic strain aging in polycrystalline RuAl alloys [J]. Intermetallics, 2003, 11(10): 1029–1038. DOI: 10.1016/S0966-9795(03)00134-1.
    [43]
    SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals [J]. Progress in Materials Science, 2017, 88: 186–231. DOI: 10.1016/j.pmatsci.2017.04.004.
    [44]
    吴涛. 淬火碳钢温变形流变行为与微观组织演变研究 [D]. 秦皇岛: 燕山大学, 2013.

    WU T. Investigations of warm deformation behavior and microstructure evolution of initially quenched carbon steels [D]. Qinhuangdao: Yanshan University, 2013.
    [45]
    YANAGIDA A, YANAGIMOTO J. A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve [J]. Journal of Materials Processing Technology, 2004, 151(1/2/3): 33–38. DOI: 10.1016/j.jmatprotec.2004.04.007.
    [46]
    LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
    [47]
    GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74–78. DOI: 10.1016/j.intermet.2013.03.018.
    [48]
    袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.

    YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
    [49]
    VAN DEN BEUKEL A, KOCKS U F. The strain dependence of static and dynamic strain-aging [J]. Acta Metallurgica, 1982, 30(5): 1027–1034. DOI: 10.1016/0001-6160(82)90211-5.
    [50]
    NAKADA Y, KEH A S. Serrated flow in Ni-C alloys [J]. Acta Metallurgica, 1970, 18(4): 437–443. DOI: 10.1016/0001-6160(70)90129-X.
    [51]
    MCCORMIGK P G. A model for the Portevin-Le Chatelier effect in substitutional alloys [J]. Acta Metallurgica, 1972, 20(3): 351–354. DOI: 10.1016/0001-6160(72)90028-4.
    [52]
    LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y.
    [53]
    CHEN J, YAO Z H, WANG X B, et al. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy [J]. Materials Chemistry and Physics, 2018, 210: 136–145. DOI: 10.1016/j.matchemphys.2017.08.011.
    [54]
    WANG Z W, LU W J, RAABE D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. Journal of Alloys and Compounds, 2019, 781: 734–743. DOI: 10.1016/j.jallcom.2018.12.061.
    [55]
    ZHANG L J, YU P F, FAN J T, et al. Investigating the micro and nanomechanical properties of CoCrFeNi-CX high-entropy alloys containing eutectic carbides [J]. Materials Science and Engineering: A, 2020, 796: 140065. DOI: 10.1016/j.msea.2020.140065.
    [56]
    KLIMOVA M V, SEMENYUK A O, SHAYSULTANOV D G, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys [J]. Journal of Alloys and Compounds, 2019, 811: 152000. DOI: 10.1016/j.jallcom.2019.152000.
    [57]
    HAN Y, LI H B, FENG H, et al. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. Journal of Materials Science and Technology, 2021, 65: 210–215. DOI: 10.1016/j.jmst.2020.04.072.
    [58]
    STEPANOV N D, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2017, 693: 394–405. DOI: 10.1016/j.jallcom.2016.09.208.
    [59]
    MEYERS M A, VÖHRINGER O, LUBARDA V A. The onset of twinning in metals: a constitutive description [J]. Acta Materialia, 2001, 49(19): 4025–4039. DOI: 10.1016/S1359-6454(01)00300-7.
    [60]
    WANG L, BEI H, LI T L, et al. Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals [J]. Scripta Materialia, 2011, 65(3): 179–182. DOI: 10.1016/j.scriptamat.2011.03.036.
    [61]
    WU Y, ZHANG F, YUAN X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. Journal of Materials Science & Technology, 2021, 62: 214–220. DOI: 10.1016/j.jmst.2020.06.018.
    [62]
    BU Y Q, WU Y, LEI Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Materials Today, 2021, 46: 28–34. DOI: 10.1016/j.mattod.2021.02.022.
    [63]
    ZHANG R P, ZHAO S T, DING J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581(7808): 283–287. DOI: 10.1038/s41586-020-2275-z.
    [64]
    CHEN X F, WANG Q, CHENG Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712–716. DOI: 10.1038/s41586-021-03428-z.
    [65]
    COTTRELL A H, JASWON M A. Distribution of solute atoms round a slow dislocation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1949, 199(1056): 104–114. DOI: 10.1098/rspa.1949.0128.
    [66]
    MCCORMICK P G. The Portevin-Le Chatelier effect in a pressurized low carbon steel [J]. Acta Metallurgica, 1973, 21(7): 873–878. DOI: 10.1016/0001-6160(73)90144-2.
    [67]
    PINK E, KUMAR S. Patterns of serrated flow in a low-carbon steel [J]. Materials Science and Engineering: A, 1995, 201(1/2): 58–64. DOI: 10.1016/0921-5093(95)09772-4.
    [68]
    SLEESWYK A W. Slow strain-hardening of ingot iron [J]. Acta Metallurgica, 1958, 6(9): 598–603. DOI: 10.1016/0001-6160(58)90101-9.
    [69]
    YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: testing and microstructural based constitutive modeling [J]. International Journal of Plasticity, 2021, 136: 102865. DOI: 10.1016/j.ijplas.2020.102865.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (208) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return