| Citation: | CHEN Anran, CHEN Haihua, YU Yao, BIAN Fuguo, YU Haojie, LI Xiangdong. Study of the characteristics of fuel spurt caused by high-velocity fragment impact the fuel tank[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0100 |
| [1] |
DISIMILE P J, DAVIS J M, PYLES J M. Qualitative assessment of a transient spray caused by a hydrodynamic ram event [J]. Journal of Flow Visualization and Image Processing, 2007, 14(3): 287–303. DOI: 10.1615/JFlowVisImageProc.v14.i3.30.
|
| [2] |
YANG H Q. A multiphase and multiphysics CFD technique for fuel spurt prediction with cavitation and fluid-structure interaction [C]//Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Dallas: AIAA, 2015. DOI: 10.2514/6.2015-3419.
|
| [3] |
ARTERO-GUERRERO J A, VARAS D, PERNAS-SÁNCHEZ J, et al. Experimental analysis of an attenuation method for hydrodynamic ram effects [J]. Materials & Design, 2018, 155: 451–462. DOI: 10.1016/j.matdes.2018.06.020.
|
| [4] |
JI Y Z Y, LI X D, ZHOU L W, et al. Experimental and numerical study on the cumulative damage of water-filled containers impacted by two projectiles [J]. Thin-Walled Structures, 2019, 135: 45–64. DOI: 10.1016/j.tws.2018.10.043.
|
| [5] |
SELVARATHINAM A S, STEWART M W, ENGELSTAD S P, et al. Application of progressive damage failure analysis to large aircraft composite structures [C]//Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2018. DOI: 10.2514/6.2018-2235.
|
| [6] |
DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. DOI: 10.1016/j.ijimpeng.2008.12.009.
|
| [7] |
DISIMILE P J, TOY N. Liquid spurt caused by hydrodynamic ram [J]. International Journal of Impact Engineering, 2015, 75: 65–74. DOI: 10.1016/j.ijimpeng.2014.08.001.
|
| [8] |
LINGENFELTER A J, LIU D, REEDER M F. Time resolved flow field measurements of orifice entrainment during a hydrodynamic ram event [J]. Journal of Visualization, 2017, 20(1): 63–74. DOI: 10.1007/s12650-016-0378-2.
|
| [9] |
BESTARD J, BUCK M, KOCHER B, et al. Hydrodynamic ram model development - survivability analysis requirements [C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu: AIAA, 2012. DOI: 10.2514/6.2012-1504.
|
| [10] |
YANG H Q, YANG S, DISIMILE P. A validation study of hydrodynamic RAM and fuel spurt using CFD tool [C]//Proceedings of AIAA SCITECH 2020 Forum. Orlando: AIAA, 2020. DOI: 10.2514/6.2020-0356.
|
| [11] |
赵一霖, 严立, 来霄毅, 等. 新一代四机并联火箭发动机喷流热环境数值研究 [J]. 空天防御, 2023, 6(1): 109–116. DOI: 10.3969/j.issn.2096-4641.2023.01.017.
ZHAO Y L, YAN L, LAI X Y, et al. Numerical study on thermal environment of a new generation of four-parallel rocket engine jet [J]. Air & Space Defense, 2023, 6(1): 109–116. DOI: 10.3969/j.issn.2096-4641.2023.01.017.
|
| [12] |
安国琛, 李仁俊, 臧月进, 等. 基于有限元方法的液体火箭发动机主动冷却技术研究 [J]. 空天防御, 2018, 1(3): 56–60. DOI: 10.3969/j.issn.2096-4641.2018.03.011.
AN G C, LI R J, ZANG Y J, et al. Active cooling technology of liquid rocket engine based on finite element [J]. Air & Space Defense, 2018, 1(3): 56–60. DOI: 10.3969/j.issn.2096-4641.2018.03.011.
|
| [13] |
KELLER J B, MIKSIS M. Bubble oscillations of large amplitude [J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633. DOI: 10.1121/1.384720.
|
| [14] |
CHEN A R, LI X D, ZHOU L W, et al. Study of liquid spurt caused by hydrodynamic ram in liquid-filled container [J]. International Journal of Impact Engineering, 2020, 144: 103658. DOI: 10.1016/j.ijimpeng.2020.103658.
|
| [15] |
CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the cavity evolution and liquid spurt of hydrodynamic ram [J]. Defence Technology, 2022, 18(11): 2008–2022. DOI: 10.1016/j.dt.2021.09.002.
|
| [16] |
陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
|
| [17] |
STRUTT J W. VI. On the capillary phenomena of jets [J]. Proceedings of the Royal Society of London, 1879, 29(196–199): 71–97. DOI: 10.1098/RSPL.1879.0015.
|
| [18] |
SALVADOR F J, SANTIAGO R, CRIALESI-ESPOSITO M, et al. Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation [J]. International Journal of Multiphase Flow, 2018, 102: 49–63. DOI: 10.1016/j.ijmultiphaseflow.2018.01.019.
|
| [19] |
XIE H Z, SONG L B, XIE Y Z, et al. An experimental study on the macroscopic spray characteristics of biodiesel and diesel in a constant volume chamber [J]. Energies, 2015, 8(6): 5952–5972. DOI: 10.3390/en8065952.
|
| [20] |
FRANC J P. The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation [M]//D’AGOSTINO L, SALVETTI M V. Fluid Dynamics of Cavitation and Cavitating Turbopumps. Vienna: Springer, 2007: 1–41. DOI: 10.1007/978-3-211-76669-9_1.
|
| [21] |
SALVADOR F J, SANTIAGO R, CRIALESI-ESPOSITO M, et al. Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation [J]. International Journal of Multiphase Flow, 2018, 102: 49–63. DOI: 10.1016/j.ijmultiphaseflow.2018.01.019.
|
| [22] |
刘延俊. 液压与气压传动[M]. 机械工业出版社, 2007: 21–31.
|
| [23] |
CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles [M]. Boca Raton: CRC Press, 2011: 57–103.
|
| [24] |
BRIFFA F E J, DOMBROWSKI N. Entrainment of air into a liquid spray [J]. AIChE Journal, 1966, 12(4): 708–717. DOI: 10.1002/aic.690120416.
|
| [25] |
LEE S Y, TANKIN R S. Study of liquid spray (water) in a condensable environment (steam) [J]. International Journal of Heat and Mass Transfer, 1984, 27(3): 363–374. DOI: 10.1016/0017-9310(84)90283-7.
|
| [26] |
MUGELE R A, EVANS H D. Droplet size distribution in sprays [J]. Industrial & Engineering Chemistry, 1951, 43(6): 1317–1324. DOI: 10.1021/ie50498a023.
|