• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LU Chang, HU Chaolei, JIAO Jinze, WANG Zhipeng, WU Tianxing, BAI Chunyu, WANG Jizhen, GUO Yazhou, ZHANG Yu, LI Xiaocheng, QIN Qinghua. Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0101
Citation: LU Chang, HU Chaolei, JIAO Jinze, WANG Zhipeng, WU Tianxing, BAI Chunyu, WANG Jizhen, GUO Yazhou, ZHANG Yu, LI Xiaocheng, QIN Qinghua. Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0101

Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials

doi: 10.11883/bzycj-2025-0101
  • Received Date: 2025-03-28
  • Rev Recd Date: 2025-06-10
  • Available Online: 2025-06-12
  • Lattice mechanical metamaterials have been widely used in various fields due to the lightweight, flexible designability and excellent impact resistance. In this paper, an enhanced X-shaped lattice mechanical metamaterial was designed and fabricated by selective laser melting. The dynamic crushing behavior and energy absorption mechanism of this metamaterials subjected to low-velocity impact were explored experimentally and numerically. The influence of impact velocity on the deformation mode and energy absorption capability of the enhanced X-shaped lattice mechanical metamaterials was analyzed. It is shown that the impact velocity has significant effects on the deformation modes of the mechanical metamaterials. At the lower impact velocities, the deformation mode of lattice mechanical metamaterials resembles that observed under quasi-static compression, characterized by the layer-by-layer crushing mode of the cells around the shear band. At the higher impact velocities, the deformation mode of lattice mechanical metamaterials transitions from X-shaped shear band to V-shaped shear band, and finally evolves into an arc-shaped shear band. The further study suggests that enhanced X-shaped lattice mechanical metamaterial exhibits a certain degree of velocity sensitivity. With the increase of the impact velocity, the initial peak stress, plateau stress, and specific energy absorption all increase correspondingly.
  • loading
  • [1]
    LI S, HOU Y L, HUANG J, et al. Exploring the enhanced energy-absorption performance of hybrid polyurethane (PU)-foam-filled lattice metamaterials [J]. International Journal of Impact Engineering, 2024, 193: 105058. DOI: 10.1016/j.ijimpeng.2024.105058.
    [2]
    MENG L, ZHONG M Z, GAO Y S, et al. Impact resisting mechanism of tension-torsion coupling metamaterials [J]. International Journal of Mechanical Sciences, 2024, 272: 109100. DOI: 10.1016/j.ijmecsci.2024.109100.
    [3]
    WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. DOI: 10.1016/j.compositesb.2020.108379.
    [4]
    WANG Y J, ZHANG X, LI Z H, et al. Achieving the theoretical limit of strength in shell-based carbon nanolattices [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2119536119. DOI: 10.1073/pnas.2119536119.
    [5]
    肖李军, 李实, 冯根柱, 等. 增材制造三维微点阵材料力学性能表征与细观优化设计研究进展 [J]. 固体力学学报, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.

    XIAO L J, LI S, FENG G Z, et al. Research progress in mechanical characterization and mesoscopic optimal design of additively-manufactured 3D microlattice materials [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.
    [6]
    WANG P, YANG F, RU D H, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application [J]. Materials & Design, 2021, 210: 110116. DOI: 10.1016/j.matdes.2021.110116.
    [7]
    WANG P, YANG F, ZHENG B L, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials [J]. Advanced Functional Materials, 2023, 33(45): 2305978. DOI: 10.1002/adfm.202305978.
    [8]
    TANCOGNE-DEJEAN T, MOHR D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams [J]. International Journal of Mechanical Sciences, 2018, 141: 101–116. DOI: 10.1016/j.ijmecsci.2018.03.027.
    [9]
    LING C, CERNICCHI A, GILCHRIST M D, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials & Design, 2019, 162: 106–118. DOI: 10.1016/j.matdes.2018.11.035.
    [10]
    NASIM M, GALVANETTO U. Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression [J]. Materials Today Communications, 2021, 29: 102902. DOI: 10.1016/j.mtcomm.2021.102902.
    [11]
    HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology [J]. Materials & Design, 2018, 155: 86–98. DOI: 10.1016/j.matdes.2018.05.059.
    [12]
    WU H, CHEN J Z, DUAN K, et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution [J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42504–42512. DOI: 10.1021/acsami.2c12297.
    [13]
    XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. DOI: 3390/ma13184083. DOI: 10.3390/ma13184083.
    [14]
    TRAXEL K D, GRODEN C, VALLADARES J, et al. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V [J]. Materials Science and Engineering: A, 2021, 809: 140925. DOI: 10.1016/j.msea.2021.140925.
    [15]
    ZHANG P, QI D X, XUE R, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials [J]. Composite Structures, 2021, 277: 114606. DOI: 10.1016/j.compstruct.2021.114606.
    [16]
    LIU B, ZOU J Q, YIN H B, et al. Compression performance evaluation of a novel origami-lattice metamaterial [J]. International Journal of Mechanical Sciences, 2024, 273: 109220. DOI: 10.1016/j.ijmecsci.2024.109220.
    [17]
    张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.

    ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
    [18]
    ZHANG M, ZHAO C, LI G X, et al. Research on the cushioning performance of layered lattice materials with multi-configuration [J]. Materials Today Communications, 2022, 31: 103246. DOI: 10.1016/j.mtcomm.2022.103246.
    [19]
    陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.

    CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
    [20]
    时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.

    SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
    [21]
    胡朝磊. 多层级力学超材料压溃行为及缓冲吸能机理研究 [D]. 西安: 西安交通大学, 2022.

    HU C L. Crushing behavior and mitigation and energy absorption mechanism of hierarchical mechanical metamaterials [D]. Xi’an: Xi’an Jiaotong University, 2022.
    [22]
    LI X, XIAO L J, SONG W D. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading [J]. Additive Manufacturing, 2021, 46: 102054. DOI: 10.1016/j.addma.2021.102054.
    [23]
    QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
    [24]
    LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955x06063519.
    [25]
    TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
    [26]
    ZHANG W, WANG H L, LOU X, et al. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb [J]. Thin-Walled Structures, 2024, 194: 111303. DOI: 10.1016/j.tws.2023.111303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article views (251) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return