Citation: | LU Chang, HU Chaolei, JIAO Jinze, WANG Zhipeng, WU Tianxing, BAI Chunyu, WANG Jizhen, GUO Yazhou, ZHANG Yu, LI Xiaocheng, QIN Qinghua. Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0101 |
[1] |
LI S, HOU Y L, HUANG J, et al. Exploring the enhanced energy-absorption performance of hybrid polyurethane (PU)-foam-filled lattice metamaterials [J]. International Journal of Impact Engineering, 2024, 193: 105058. DOI: 10.1016/j.ijimpeng.2024.105058.
|
[2] |
MENG L, ZHONG M Z, GAO Y S, et al. Impact resisting mechanism of tension-torsion coupling metamaterials [J]. International Journal of Mechanical Sciences, 2024, 272: 109100. DOI: 10.1016/j.ijmecsci.2024.109100.
|
[3] |
WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. DOI: 10.1016/j.compositesb.2020.108379.
|
[4] |
WANG Y J, ZHANG X, LI Z H, et al. Achieving the theoretical limit of strength in shell-based carbon nanolattices [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2119536119. DOI: 10.1073/pnas.2119536119.
|
[5] |
肖李军, 李实, 冯根柱, 等. 增材制造三维微点阵材料力学性能表征与细观优化设计研究进展 [J]. 固体力学学报, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.
XIAO L J, LI S, FENG G Z, et al. Research progress in mechanical characterization and mesoscopic optimal design of additively-manufactured 3D microlattice materials [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.
|
[6] |
WANG P, YANG F, RU D H, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application [J]. Materials & Design, 2021, 210: 110116. DOI: 10.1016/j.matdes.2021.110116.
|
[7] |
WANG P, YANG F, ZHENG B L, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials [J]. Advanced Functional Materials, 2023, 33(45): 2305978. DOI: 10.1002/adfm.202305978.
|
[8] |
TANCOGNE-DEJEAN T, MOHR D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams [J]. International Journal of Mechanical Sciences, 2018, 141: 101–116. DOI: 10.1016/j.ijmecsci.2018.03.027.
|
[9] |
LING C, CERNICCHI A, GILCHRIST M D, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials & Design, 2019, 162: 106–118. DOI: 10.1016/j.matdes.2018.11.035.
|
[10] |
NASIM M, GALVANETTO U. Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression [J]. Materials Today Communications, 2021, 29: 102902. DOI: 10.1016/j.mtcomm.2021.102902.
|
[11] |
HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology [J]. Materials & Design, 2018, 155: 86–98. DOI: 10.1016/j.matdes.2018.05.059.
|
[12] |
WU H, CHEN J Z, DUAN K, et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution [J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42504–42512. DOI: 10.1021/acsami.2c12297.
|
[13] |
XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. DOI: 3390/ma13184083. DOI: 10.3390/ma13184083.
|
[14] |
TRAXEL K D, GRODEN C, VALLADARES J, et al. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V [J]. Materials Science and Engineering: A, 2021, 809: 140925. DOI: 10.1016/j.msea.2021.140925.
|
[15] |
ZHANG P, QI D X, XUE R, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials [J]. Composite Structures, 2021, 277: 114606. DOI: 10.1016/j.compstruct.2021.114606.
|
[16] |
LIU B, ZOU J Q, YIN H B, et al. Compression performance evaluation of a novel origami-lattice metamaterial [J]. International Journal of Mechanical Sciences, 2024, 273: 109220. DOI: 10.1016/j.ijmecsci.2024.109220.
|
[17] |
张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
|
[18] |
ZHANG M, ZHAO C, LI G X, et al. Research on the cushioning performance of layered lattice materials with multi-configuration [J]. Materials Today Communications, 2022, 31: 103246. DOI: 10.1016/j.mtcomm.2022.103246.
|
[19] |
陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
|
[20] |
时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
|
[21] |
胡朝磊. 多层级力学超材料压溃行为及缓冲吸能机理研究 [D]. 西安: 西安交通大学, 2022.
HU C L. Crushing behavior and mitigation and energy absorption mechanism of hierarchical mechanical metamaterials [D]. Xi’an: Xi’an Jiaotong University, 2022.
|
[22] |
LI X, XIAO L J, SONG W D. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading [J]. Additive Manufacturing, 2021, 46: 102054. DOI: 10.1016/j.addma.2021.102054.
|
[23] |
QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
|
[24] |
LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955x06063519.
|
[25] |
TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
|
[26] |
ZHANG W, WANG H L, LOU X, et al. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb [J]. Thin-Walled Structures, 2024, 194: 111303. DOI: 10.1016/j.tws.2023.111303.
|