| Citation: | LI Rongxin, CHEN Jialin, WANG Ruiqi, SONG Jiaxing, HUANG Junyi, ZHANG Azhen, WU Jiaxiang, LI Yuchun. Optimization of structural design and damage efficacy for CoCrFeNiCux high-entropy alloy liners in explosively formed projectiles[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0144 |
| [1] |
NING J G, CHEN Q D, LI J Q, et al. Improved shaped charge formation model based on the effective charge [J]. International Journal of Mechanical Sciences, 2025, 295: 110223. DOI: 10.1016/j.ijmecsci.2025.110223.
|
| [2] |
李干, 陈小伟. 聚能射流侵彻径向扩孔的可压缩模型 [J]. 爆炸与冲击, 2022, 42(7): 073301. DOI: 10.11883/bzycj-2021-0466.
LI G, CHEN X W. A compressible model of radial crater growth by shaped-charge jet penetration [J]. Explosion and Shock Waves, 2022, 42(7): 073301. DOI: 10.11883/bzycj-2021-0466.
|
| [3] |
HAO L K, GU W B, ZHANG Y D, et al. Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile (EFP) [J]. Defence Technology, 2023, 28: 280–297. DOI: 10.1016/j.dt.2022.11.003.
|
| [4] |
李珍珍, 杨永亮, 王雅君, 等. 大长径比尾翼爆炸成型弹丸飞行稳定性分析 [J]. 振动与冲击, 2025, 44(4): 184–197,216. DOI: 10.13465/j.cnki.jvs.2025.04.020.
LI Z Z, YANG Y L, WANG Y J, et al. Flight stability analysis of large aspect ratio explosively formed projectiles with fins [J]. Journal of Vibration and Shock, 2025, 44(4): 184–197,216. DOI: 10.13465/j.cnki.jvs.2025.04.020.
|
| [5] |
郑斌, 尚勇, 程丽丽, 等. EFP战斗部穿甲威力对末敏弹作战效能影响分析 [J]. 弹箭与制导学报, 2022, 42(4): 57–61. DOI: 10.15892/j.cnki.djzdxb.2022.04.011.
ZHENG B, SHANG Y, CHENG L L, et al. Impact analysis of armor piercing power of EFP on operational efficiency of terminal sensitive projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(4): 57–61. DOI: 10.15892/j.cnki.djzdxb.2022.04.011.
|
| [6] |
MA T B, LIU J, WANG Q. Influence of shaped charge structure parameters on the formation of linear explosively formed projectiles [J]. Defence Technology, 2022, 18(10): 1863–1874. DOI: 10.1016/j.dt.2021.08.005.
|
| [7] |
陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究 [J]. 爆炸与冲击, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.
CHEN J L, LI S T, CHEN Y Q. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation [J]. Explosion and Shock Waves, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.
|
| [8] |
宋福琛, 郭辉, 陈玉. UHMWPE薄板抗轻武器杀伤元斜侵彻研究 [J]. 爆炸与冲击, 2024, 44(11): 113301. DOI: 10.11883/bzycj-2023-0208.
SONG F C, GUO H, CHEN Y. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo [J]. Explosion and Shock Waves, 2024, 44(11): 113301. DOI: 10.11883/bzycj-2023-0208.
|
| [9] |
邢逸凡, 郑文凯, 曹玉武, 等. 高熵合金在高效毁伤领域的研究及应用进展 [J]. 火炮发射与控制学报, 2025, 46(4): 115–121. DOI: 10.19323/j.issn.1673-6524.202412005.
XING Y F, ZHENG W K, CAO Y W, et al. Research and application progress of high-entropy alloys in the field of high-efficiency damage [J]. Journal of Gun Launch and Control, 2025, 46(4): 115–121. DOI: 10.19323/j.issn.1673-6524.202412005.
|
| [10] |
刘扬, 范怡静, 沈伟建, 等. 药型罩材料技术研究进展 [J]. 材料导报, 2025, 39(7): 145–153. DOI: 10.11896/cldb.24040081.
LIU Y, FAN Y J, SHEN W J, et al. Progress in the materials for shaped charge liners [J]. Materials Reports, 2025, 39(7): 145–153. DOI: 10.11896/cldb.24040081.
|
| [11] |
YANG Y S, WANG C T, MENG Y P, et al. Recent progress on impact induced reaction mechanism of reactive alloys [J]. Defence Technology, 2024, 37: 69–95. DOI: 10.1016/j.dt.2023.11.002.
|
| [12] |
何勇, 杨岩松, 何源, 等. 反应合金材料冲击释能机理研究进展 [J]. 科学通报, 2024, 69(9): 1211-1222. DOI: 10.1360/TB-2023-0582.
HE Y, YANG Y S, HE Y, et al. Recent progress in impact-induced reaction mechanisms of reactive alloys [J] Chinese Science Bulletin, 2024, 69(9): 1211-1222. DOI: 10.1360/TB-2023-0582.
|
| [13] |
马胜国, 王志华. CoCrFeNiAlx系高熵合金的动态力学性能和本构关系 [J]. 爆炸与冲击, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.
MA S G, WANG Z H. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys [J]. Explosive and Shock Waves, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.
|
| [14] |
陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
|
| [15] |
李天昕, 王书道, 卢一平, 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.
LI T X, WANG S D, LU Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study of CAE, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.
|
| [16] |
TSAI M H, YEH J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107–123. DOI: 10.1080/21663831.2014.912690.
|
| [17] |
LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y.
|
| [18] |
TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. DOI: 10.1126/sciadv.abp9096.
|
| [19] |
SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material [J]. Nature, 2018, 554(7691): 224–228. DOI: 10.1038/nature25476.
|
| [20] |
PANDEY V, SEETHARAM R, CHELLADURAI H. A comprehensive review: discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications [J]. Journal of Alloys and Compounds, 2024, 1002: 175095. DOI: 10.1016/j.jallcom.2024.175095.
|
| [21] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. DOI: 10.1016/j.actamat.2016.08.081.
|
| [22] |
张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科学技术大学, 2017: 86-87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.
ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 86-87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.
|
| [23] |
侯先苇, 熊玮, 陈海华, 等. 两种典型高熵合金冲击释能及毁伤特性研究 [J]. 力学学报, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.
HOU X W, XIONG W, CHEN H H, et al. Impact energy release and damage characteristics of two high-entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.
|
| [24] |
郭孜涵, 陈闯, 涂益良, 等. HfZrTiTaNb系高熵合金的冲击反应释能定量确定 [J]. 高压物理学报, 2024, 38(1): 014103. DOI: 10.11858/gywlxb.20230817.
GUO Z H, CHEN C, TU Y L, et al. Quantitative determination of impact reaction energy release for HfZrTiTaNb based high-entropy alloys [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014103. DOI: 10.11858/gywlxb.20230817.
|
| [25] |
鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
|
| [26] |
刘承哲, 王海福, 张甲浩, 等. 轻质高熵合金聚能射流毁伤混凝土靶行为研究 [J]. 兵工学报, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.
LIU C Z, WANG H F, ZHANG J H, et al. Research on behavior of lightweight high-entropy alloy jet penetrating concrete targets [J]. Acta Armamentarii, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.
|
| [27] |
LI R X, DING J B, ZHAO Y Y, et al. Preliminary study on the dynamic deformation mechanism of CoCrFeNi high-entropy alloy and its application in the shaped charge liner [J]. Journal of Alloys and Compounds, 2024, 999: 175083. DOI: 10.1016/j.jallcom.2024.175083.
|
| [28] |
WANG X T, WANG B P, LIU X D, et al. Asynchronous deformation behavior of precipitation-hardened high-entropy alloys shaped charge liner under explosive loading [J]. Intermetallics, 2025, 176: 108555. DOI: 10.1016/j.intermet.2024.108555.
|
| [29] |
李海峰, 门建兵, 金文, 等. Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验 [J]. 爆炸与冲击, 2025, 45(3): 55-65. DOI: 10.11883/bzycj-2024-0069.
LI H F, MEN J B, JIN W, et al. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test [J]. Explosion and Shock Waves, 2025, 45(3): 033103. DOI: 10.11883/bzycj-2024-0069.
|
| [30] |
SINGH S K, PARASHAR A. Shock resistance capability of multi-principal elemental alloys as a function of lattice distortion and grain size [J]. Journal of Applied Physics, 2022, 132(9): 095903. DOI: 10.1063/5.0106637.
|
| [31] |
CAO T Q, ZHANG Q, WANG L, et al. Dynamic deformation behaviors and mechanisms of CoCrFeNi high-entropy alloys [J]. Acta Materialia, 2023, 260: 119343. DOI: 10.1016/j.actamat.2023.119343.
|
| [32] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings 7th International Symposium on Ballistics. Hague, 1983: 541-548.
|
| [33] |
ROLLETT A, HUMPHREYS F J, ROHRER G S, et al. Recrystallization and related annealing phenomena [M]. 3rd ed. Amsterdam: Elsevier, 2017. DOI: 10.1016/B978-0-08-098235-9.00002-1.
|
| [34] |
ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013.
|
| [35] |
李昌伟, 张勇. 铜含量对CoCrFeNi高熵合金组织结构和性能的影响 [J]. 精密成形工程, 2022, 14(12): 1–9. DOI: 10.3969/j.issn.1674-6457.2022.12.001.
LI C W, ZHANG Y. Effects of copper addition on microstructure and properties of CoCrFeNi high entropy alloy [J]. Journal of Netshape Forming Engineering, 2022, 14(12): 1–9. DOI: 10.3969/j.issn.1674-6457.2022.12.001.
|
| [36] |
CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP) [J]. International Journal of Impact Engineering, 2016, 93: 116–127. DOI: 10.1016/j.ijimpeng.2016.02.014.
|
| [37] |
LI R X, CHEN J L, WANG R Q, et al. Performance study of explosively formed projectile using CoCrFeNi high-entropy alloy as a liner [J]. Journal of Applied Physics, 2024, 136(14): 145901. DOI: 10.1063/5.0231905.
|
| [38] |
LI R X, WANG R Q, TIAN Q W, et al. An investigation on the jet formation and penetration characteristics of the CuCoCrFeNi high-entropy alloy liner [J]. AIP Advances, 2024, 14(5): 055017. DOI: 10.1063/5.0207709.
|
| [39] |
刘迪, 顾云, 孙飞, 等. 基于聚能射流的岩石定向劈裂机制 [J]. 爆炸与冲击, 2023, 43(8): 083303. DOI: 10.11883/bzycj-2022-0496.
LIU D, GU Y, SUN F, et al. Directional splitting mechanism of rock based on shaped charge jet [J]. Explosion and Shock Waves, 2023, 43(8): 083303. DOI: 10.11883/bzycj-2022-0496.
|
| [40] |
王瑞琪, 孙焕, 任鑫鑫, 等. 带截体聚能装药正交优化设计 [J]. 兵器装备工程学报, 2022, 43(3): 229–234. DOI: 10.11809/bqzbgcxb2022.03.036.
WANG R Q, SUN H, REN X X, et al. Orthogonal optimization design of shaped charge with truncated body [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 229–234. DOI: 10.11809/bqzbgcxb2022.03.036.
|
| [41] |
黄超, 徐维铮, 曾繁, 等. 近水面空中爆炸冲击波的载荷特性 [J]. 爆炸与冲击, DOI: 10.11883/bzycj-2024-0457.
HUANG C, XU W Z, ZENG F, et al. Research on shock wave load characteristics of near water surface blast [J/OL]. Explosion and Shock Waves, DOI: 10.11883/bzycj-2024-0457.
|
| [42] |
BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities [J]. Journal of Applied Physics, 1948, 19(6): 563–582. DOI: 10.1063/1.1698173.
|
| [43] |
聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究 [J]. 爆炸与冲击, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.
NIE X D, WU X Y, LONG Z L, et al. Research on penetration depth of projectiles into ultra-high performance concrete targets [J] Explosion and Shock Waves, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.
|
| [44] |
唐奎, 王金相, 陈兴旺, 等. 夹心弹对半无限钢靶的侵彻特性 [J]. 爆炸与冲击, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.
TANG K, WANG J X, CHEN X W, et al. Penetration characteristics of jacketed rods into semi-infinite steel targets [J] Explosion and Shock Waves, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.
|
| [45] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
|