| Citation: | ZHANG Chen, GAO Fei, HE Rui, WANG Zhen, ZHANG Guokai. Dynamic mechanical properties and constitutive model of ultra-high performance concrete subjected to coupled high-temperature and impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0171 |
| [1] |
任亮, 何瑜, 王凯. 超高性能混凝土抗冲击性能研究进展 [J]. 硅酸盐通报, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023.
REN L, HE Y, WANG K. Research progress on impact resistance of ultra high performance concrete [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023.
|
| [2] |
张仲昊, 汪维, 张国凯, 等. 不同高温作用后混凝土劣化损伤性能 [J]. 兵工学报, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731.
ZHANG Z H, WANG W, ZHANG G K, et al. Study on deterioration and damage performance of concrete at different high temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731.
|
| [3] |
杨婷, 杨烨凯, 刘中宪, 等. 高温后超高性能混凝土力学性能试验研究 [J]. 工程力学, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052.
YANG T, YANG Y K, LIU Z X, et al. Investigation on mechanical properties of ultra-high performance concrete after high temperature [J]. Engineering Mechanics, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052.
|
| [4] |
XIONG M X, LIEW J Y R. Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after exposure to high temperatures [J]. Materiales de Construcción, 2015, 65(320): e071. DOI: 10.3989/mc.2015.00715.
|
| [5] |
毛振豪, 马乾坤, 张继承, 等. 活性粉末混凝土高温后强度退化规律试验研究 [J]. 硅酸盐通报, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002.
MAO Z H, MA Q K, ZHANG J C, et al. Experimental research on strength degradation law of reactive powder concrete after elevated temperatures [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002.
|
| [6] |
YANG H, ZHAO H, LIU F Q. Residual cube strength of coarse RCA concrete after exposure to elevated temperatures [J]. Fire and Materials, 2018, 42(4): 424–435. DOI: 10.1002/fam.2508.
|
| [7] |
KRISHNA D A, PRIYADARSINI R S, NARAYANAN S. High temperature effects on different grades of concrete [J]. Sādhanā, 2021, 46(1): 31. DOI: 10.1007/s12046-020-01536-6.
|
| [8] |
ZHANG H, ZHANG W H, CHEN Y, et al. Study on the dynamic impact mechanical properties of high-temperature resistant ultra-high performance concrete (HTRUHPC) after high temperatures [J]. Journal of Building Engineering, 2024, 91: 109752. DOI: 10.1016/j.jobe.2024.109752.
|
| [9] |
王立闻, 庞宝君, 杨震琦, 等. 钢纤维活性粉末混凝土高温后动力学特性研究 [J]. 建筑材料学报, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011.
WANG L W, PANG B J, YANG Z Q, et al. Dynamic behavior for steel-fiber reinforced reactive powder concrete after exposure in high temperature [J]. Journal of Building Materials, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011.
|
| [10] |
GAO D Y, ZHANG W, TANG J Y, et al. Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures [J]. Construction and Building Materials, 2024, 435: 136830. DOI: 10.1016/j.conbuildmat.2024.136830.
|
| [11] |
SU H Y, XU J Y, REN W B. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature [J]. Materials & Design (1980-2015), 2014, 56: 579-588. DOI: 10.1016/j.matdes.2013.11.024.
|
| [12] |
CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
|
| [13] |
YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
|
| [14] |
KOU X Y, LI L, DU X L, et al. Elastoplastic dynamic constitutive model of concrete with combined effects of temperature and strain rate [J]. Case Studies in Construction Materials, 2023, 18: e01905. DOI: 10.1016/j.cscm.2023.e01905.
|
| [15] |
王景海, 陈万祥, 邹慧辉, 等. 高温后钢管RPC动态本构模型及SHPB试验验证 [J]. 解放军理工大学学报(自然科学版), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002.
WANG J H, CHEN W X, ZOU H H, et al. Dynamic constitutive model and SHPB tests for RPC-filled steel tube after exposure to high temperature [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002.
|
| [16] |
LIANG W B, ZHAO J H, LI Y, et al. Research on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete after exposure to elevated temperatures under impact loading [J]. Applied Sciences, 2020, 10(21): 7684. DOI: 10.3390/app10217684.
|
| [17] |
SHEMIRANI A B, NAGHDABADI R, ASHRAFI M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus [J]. Construction and Building Materials, 2016, 125: 326–336. DOI: 10.1016/j.conbuildmat.2016.08.045.
|
| [18] |
宋博, 姜锡权, 陈为农. 霍普金森压杆实验中的脉冲整形技术 [C]//第三届全国爆炸力学实验技术交流会论文集. 合肥: 中国科学技术大学冲击动力学实验室, 2004: 77–146.
SONG B, JIANG X Q, CHEN W N. Pulse shaping technique in split Hopkinson pressure bar (SHPB) experiments [C]//Proceedings of the Third National Symposium on Experimental Technology of Explosive Mechanics. Hefei: Laboratory of Shock Dynamics, University of Science and Technology of China, 2004: 77–146.
|
| [19] |
高光发. 固体中的应力波导论 [M]. 北京: 科学出版社, 2022: 245–249.
GAO G F. Introduction to stress waves in solid [M]. Beijing: Science Press, 2022: 245–249.
|
| [20] |
高光发, 郭扬波. 高强混凝土动态压缩试验分析 [J]. 爆炸与冲击, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405.
GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete [J]. Explosion and Shock Waves, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405.
|
| [21] |
罗百福. 高温下活性粉末混凝土爆裂规律及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 44–50.
LUO B F. Study on explosive spalling rules and mechanical properties of reactive powder concrete at elevated temperatures [D]. Harbin: Harbin Institute of Technology, 2014: 44–50.
|
| [22] |
康亚明, 贾延, 罗玉财, 等. 莫尔-库仑准则下高强度混凝土的临界爆裂蒸汽压力 [J]. 爆炸与冲击, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305.
KANG Y M, JIA Y, LUO Y C, et al. Critical vapour pressure for explosive spalling of high-strength concrete based on Mohr-Coulomb criterion [J]. Explosion and Shock Waves, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305.
|
| [23] |
PR K R, MATHANGI D P, C S, et al. Experimental investigation of reactive powder concrete exposed to elevated temperatures [J]. Construction and Building Materials, 2020, 261: 119593. DOI: 10.1016/j.conbuildmat.2020.119593.
|
| [24] |
ZHAO J, ZHENG J J, PENG G F, et al. A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure [J]. Cement and Concrete Research, 2014, 65: 64–75. DOI: 10.1016/j.cemconres.2014.07.010.
|
| [25] |
姜猛, 郭志昆, 陈万祥, 等. 高温后钢管活性粉末混凝土的动态力学性能 [J]. 爆炸与冲击, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10.
JIANG M, GUO Z K, CHEN W X, et al. Mechanical properties of reactive powder concrete-filled steel tube after exposure to high temperature under impact loading [J]. Explosion and Shock Waves, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10.
|
| [26] |
吴平, 周飞, 李庆华, 等. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究 [J]. 爆炸与冲击, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178.
WU P, ZHOU F, LI Q H, et al. Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact [J]. Explosion And Shock Waves, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178.
|
| [27] |
徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 [J]. 工程力学, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.
XU S L, CHEN C, LI Q H, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites [J]. Engineering Mechanics, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.
|
| [28] |
赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究 [D]. 杭州: 浙江大学, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077.
ZHAO X. Experimental and theoretical study on the dynamic properties of ultra high toughness cementitious composites [D]. Hangzhou: Zhejiang University, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077.
|
| [29] |
吴栩霆, 王振, 周航, 等. 不同冷却方式下高温混凝土的动态力学特性 [J]. 爆炸与冲击, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097.
WU X T, WANG Z, ZHOU H, et al. Study on dynamic mechanical properties of high-temperature concrete with different cooling methods [J]. Explosion and Shock Waves, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097.
|
| [30] |
DU Y X, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
|
| [31] |
宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用 [J]. 爆炸与冲击, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.
SONG S, DU C, LI Y Y. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete [J]. Explosion and Shock Waves, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.
|
| [32] |
过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究 [J]. 土木工程学报, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.
GUO Z H, WANG C Z. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.
|
| [33] |
仵鹏涛. 三向应力状态下超高性能混凝土材料静态力学性能研究 [D]. 天津: 天津大学, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.
WU P T. Study of static mechanical properties of ultra-high performance concrete under triaxial stress states [D]. Tianjin: Tianjin University, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.
|
| [34] |
TIAN X C, TAO T J, LOU Q X, et al. Modification and application of limestone HJC constitutive model under the impact load [J]. Lithosphere, 2021, 2021(S7): 6443087. DOI: 10.2113/2022/6443087.
|
| [35] |
王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度 [J]. 硅酸盐学报, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.
WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.
|
| [36] |
YU R, SPIESZ P, BROUWERS H J H. Numerical simulation of ultra-high performance fibre reinforced concrete (UHPFRC) under high velocity impact of deformable projectile [C]//15th International Symposium on Interaction of the Effects of Munitions with Structure (ISIEMS2013). Potsdam: Defense Threat Reduction Agency, 2013: 1–10.
|