• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
GAO Chu, KONG Xiangzhen, JIA Yongsheng, WANG Zihao. Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0175
Citation: GAO Chu, KONG Xiangzhen, JIA Yongsheng, WANG Zihao. Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0175

Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials

doi: 10.11883/bzycj-2025-0175
  • Received Date: 2025-06-12
  • Rev Recd Date: 2025-11-07
  • Available Online: 2025-11-13
  • To investigate the shear-enhanced compaction effect and strain-rate effect on the equation of state (EoS) of concrete-like materials subjected to blast and impact loadings, high-fidelity numerical simulations were performed based on two types of EoS behavior tests for cement mortar, including hydrostatic compression tests and flyer-plate impact tests. These simulations employed the Kong-Fang hydro-elasto-plastic model for concrete-like materials and were implemented using the smoothed particle Galerkin (SPG) algorithm in LS-DYNA, enabling accurate reproduction of complex dynamic mechanical behaviors, including the shear-enhanced compaction effect and strain-rate effect. Based on the high-fidelity numerical simulations described above, a quantitative analysis was conducted to investigate the influence of the shear-enhanced compaction effect and strain-rate effect on EoS behavior of concrete-like materials, and the challenges associated with eliminating the shear-enhanced compaction and strain-rate coupling effects in flyer-plate impact tests were systematically identified. The results demonstrate that the Kong-Fang model, when combined with the SPG algorithm, can accurately simulate the complex dynamic mechanical behaviors of concrete-like materials, including shear-enhanced compaction effect and strain-rate effect. To achieve high-precision simulation of dynamic mechanical behaviors of concrete-like materials subjected to blast and impact loadings across high-medium-low pressure ranges, it is essential to establish an EoS with a wide-range pressure based on experimental data from EoS behavior tests. However, shear-enhanced compaction and strain-rate coupling effects should be eliminated when using flyer-plate impact test data to calibrate the EoS parameters. A paradox arises in the establishment of EoS with wide-range pressure for concrete-like materials, and the application of numerical iteration correction methodology may represent an effective approach to resolving this challenge. These findings provide a theoretical foundation for the future development of a numerical iteration correction methodology to eliminate the shear-enhanced compaction effect and strain-rate effect on the EoS of concrete-like materials, thereby facilitating the establishment of a high-precision EoS with a wide range of pressure for concrete-like materials subjected to impact and blast loadings.
  • loading
  • [1]
    刘锋, 李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应 [J]. 爆炸与冲击, 2022, 42(9): 091408. DOI: 10.11883/bzycj-2022-0037.

    LIU F, LI Q M. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state [J]. Explosion and Shock Waves, 2022, 42(9): 091408. DOI: 10.11883/bzycj-2022-0037.
    [2]
    WANG Z H, WEN H M, LI X H, et al. On the equation of state for concrete-like materials [J]. Journal of Building Engineering, 2022, 61: 105262. DOI: 10.1016/j.jobe.2022.105262.
    [3]
    LARSON D B, ANDERSON G D. Plane shock wave studies of porous geologic media [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4592–4600. DOI: 10.1029/JB084iB09p04592.
    [4]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [5]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [6]
    MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
    [7]
    高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.

    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
    [8]
    LIU X, KONG X Z, FANG Q, et al. Peridynamics modelling of projectile penetration into concrete targets [J]. International Journal of Impact Engineering, 2025, 195: 105110. DOI: 10.1016/j.ijimpeng.2024.105110.
    [9]
    王礼立, 胡时胜. 应力波基础 [M]. 3版. 北京: 国防工业出版社, 2023: 213–230.

    WANG L L, HU S S. Foundation of stress waves [M]. 3rd ed. Beijing: National Defense Industry Press, 2023: 213–230.
    [10]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//14th International Symposium Ballistics. Québec City, Canada: American Defense Preparedness Association, 1993: 591–600.
    [11]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg, Germany: Akademie für Kommunikation und Information, 1999: 315–322.
    [12]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [13]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [14]
    CUI J, HAO H, SHI Y C, et al. Volumetric properties of concrete under true triaxial dynamic compressive loadings [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019126. DOI: 10.1061/(ASCE)MT.1943-5533.0002776.
    [15]
    MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, Inc. , 1994: 98, 117–179. DOI: 10.1002/9780470172278.
    [16]
    王海兵. 岩石本构模型及地下爆炸力学效应数值研究 [D]. 北京: 北京理工大学, 2018: 45–60. DOI: 10.26948/d.cnki.gbjlu.2018.000264.

    WANG H B. Study on rock constitutive model and mechanical effects numerical simulation of underground explosion [D]. Beijing: Beijing Institute of Technology, 2018: 45–60. DOI: 10.26948/d.cnki.gbjlu.2018.000264.
    [17]
    GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [18]
    HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [19]
    STRALEY Ш H W. The physics of high pressure. P. W. Bridgman [J]. The Journal of Geology, 1933, 41(1): 106. DOI: 10.1086/624011.
    [20]
    NEEL C. Compaction and spall of UHPC concrete under shock conditions [J]. Journal of Dynamic Behavior of Materials, 2018, 4(4): 505–528. DOI: 10.1007/s40870-018-0173-3.
    [21]
    PIOTROWSKA E, FORQUIN P. Experimental investigation of the confined behavior of dry and wet high-strength concrete: quasi static versus dynamic loading [J]. Journal of Dynamic Behavior of Materials, 2015, 1(2): 191–200. DOI: 10.1007/s40870-015-0017-3.
    [22]
    LI M, CUI J, SHI Y C, et al. Experimental study on the size effect on the equation of state of concretes under shock loading [J]. Defence Technology, 2024, 33: 160–167. DOI: 10.1016/j.dt.2023.06.014.
    [23]
    Livermore Software Technology Corporation. LS-DYNA® keyword user’s manual volume I (LS-DYNA R11) [R]. Livermore: Livermore Software Technology Corporation (LSTC), 2018.
    [24]
    孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024605. DOI: 10.1360/SSPMA-2019-0186.

    KONG X Z, FANG Q. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the Smooth Particle Hydrodynamics method [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(2): 024605. DOI: 10.1360/SSPMA-2019-0186.
    [25]
    WU C T, WU Y C, CRAWFORD J E, et al. Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method [J]. International Journal of Impact Engineering, 2017, 106: 1–17. DOI: 10.1016/j.ijimpeng.2017.03.005.
    [26]
    方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.

    FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
    [27]
    WANG L B, BAI Z, QIAN B W, et al. Research on the damage effects of buried explosions concerning the crater size and peak wave [J]. International Journal of Impact Engineering, 2025, 206: 105410. DOI: 10.1016/j.ijimpeng.2025.105410.
    [28]
    YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
    [29]
    YANG Y Z, KONG X Z, TANG J J, et al. Experimental and numerical investigation on projectile penetration resistance of prefabricated concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105053. DOI: 10.1016/j.ijimpeng.2024.105053.
    [30]
    YANKELEVSKY D Z, KARINSKI Y S, ZHUTOVSKY S, et al. High-pressure uniaxial confined compression tests of mortars [J]. Construction and Building Materials, 2018, 165: 523–532. DOI: 10.1016/j.conbuildmat.2018.01.057.
    [31]
    WANG Z H, WEN H M, ZHENG H, et al. Dynamic increase factors of concrete-like materials at very high strain rates [J]. Construction and Building Materials, 2022, 345: 128270. DOI: 10.1016/j.conbuildmat.2022.128270.
    [32]
    KOHEES M, SANJAYAN J, RAJEEV P. Stress-strain relationship of cement mortar under triaxial compression [J]. Construction and Building Materials, 2019, 220: 456–463. DOI: 10.1016/j.conbuildmat.2019.05.146.
    [33]
    FENG M Y, WANG Z, WU L C. Experimental study on high-strength concrete, ultrahigh-strength concrete and corresponding mortar under triaxial compression [J]. Arabian Journal for Science and Engineering, 2021, 46(11): 11179–11194. DOI: 10.1007/s13369-021-05663-y.
    [34]
    GEBBEKEN N, GREULICH S, PIETZSCH A. Equation of state data for concrete determined by full-scale experiments and flyer-plate-impact tests [C] // European Conference on Computational Mechanics. Cracow Poland, 2001.
    [35]
    RIEDEL W, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155–171. DOI: 10.1016/j.ijimpeng.2007.02.001.
    [36]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.Ijimpeng.2013.04.005.
    [37]
    HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [38]
    YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [39]
    XU S L, WU P, LI Q H, et al. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive [J]. Cement and Concrete Composites, 2021, 119: 103989. DOI: 10.1016/j.cemconcomp.2021.103989.
    [40]
    YUAN P C, XU S C, LIU J, et al. Experimental and numerical study of blast resistance of geopolymer based high performance concrete sandwich walls incorporated with metallic tube core [J]. Engineering Structures, 2023, 278: 115505. DOI: 10.1016/j.engstruct.2022.115505.
    [41]
    ZHOU L, WEN H M. A new dynamic plasticity and failure model for metals [J]. Metals, 2019, 9(8): 905. DOI: 10.3390/met9080905.
    [42]
    LACINA D, NEEL C, DATTELBAUM D. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges [J]. Journal of Applied Physics, 2018, 123(18): 185901. DOI: 10.1063/1.5023230.
    [43]
    TANG J J, KONG X Z, FANG Q, et al. An efficient three-dimensional damage-based nonlocal model for dynamic tensile failure in concrete [J]. International Journal of Impact Engineering, 2021, 156: 103965. DOI: 10.1016/j.ijimpeng.2021.103965.
    [44]
    KONG X Z, FANG Q, WU H, et al. A comparison of strain-rate enhancement approaches for concrete material subjected to high strain-rate [J]. International Journal of Protective Structures, 2017, 8(2): 155–176. DOI: 10.1177/2041419617698320.
    [45]
    KARINSKI Y S, ZHUTOVSKY S, FELDGUN V R, et al. An experimental study on the equation of state of cementitious materials using confined compression tests [J]. Key Engineering Materials, 2016, 711: 830–836. DOI: 10.4028/www.scientific.net/KEM.711.830.
    [46]
    MEYERS M A, MURR L E. Shock waves and high-strain-rate phenomena in metals: concepts and applications [M]. New York: Plenum Press, 1981: 417.
    [47]
    经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999: 222–227.
    [48]
    张江跃, 谭华, 虞吉林. 双屈服法测定93W合金的屈服强度 [J]. 高压物理学报, 1997, 11(4): 254–259. DOI: 10.11858/gywlxb.1997.04.004.

    ZHANG J Y, TAN H, YU J L. Determination of the yield strength of 93W alloys by using AC techniques [J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 254–259. DOI: 10.11858/gywlxb.1997.04.004.
    [49]
    HAO H, HAO Y F, LI Z X. Numerical quantification of factors influencing high-speed impact tests of concrete material [M]//HAO H, LI Z X. Advances in Protective Structures Research. London: CRC Press, 2012: 97–130. DOI: 10.1201/b12768-5.
    [50]
    LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (191) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return