• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LIAO Huming, YANG Yanhong, GUO Zhirong, WANG Hao, HUANG Zhida, YANG Hongtao, MA Qianli, JIA Xianzhen, LI Bo. The HOTM method for predicting ammunition response characteristics under different impact load conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0178
Citation: LIAO Huming, YANG Yanhong, GUO Zhirong, WANG Hao, HUANG Zhida, YANG Hongtao, MA Qianli, JIA Xianzhen, LI Bo. The HOTM method for predicting ammunition response characteristics under different impact load conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0178

The HOTM method for predicting ammunition response characteristics under different impact load conditions

doi: 10.11883/bzycj-2025-0178
  • Received Date: 2025-06-16
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-04
  • With the development of modern weapon systems, the requirements for the survivability of ammunition in various complex environments have been continuously increasing. During the processes of storage, flight, and combat, ammunition may be subjected to extreme impact loads such as high-speed impacts, shock waves, bullet and fragment impacts. The external impacts can induce plastic deformation and fracture of the ammunition casing, and even detonate the internal explosives. These responses involve complex phenomena including impact loading, thermo-mechanical coupling of materials, chemical reactions of explosives, and blast effects, representing a typical dynamic response problem of reactive materials under extreme thermo-mechanical coupling conditions. Accurately predicting the responses of ammunition under impact loading is critical for its design optimization and safety assessment. Based on the Hot Optimal Transportation Meshfree (HOTM) method, a meshfree numerical approach was proposed to accurately predict the ammunition responses under different impact loadings. Meanwhile, a thermo-mechanical-chemical coupling constitutive model of explosives was established, which took the effects of temperature and pressure on the explosive’s chemical reaction and detonation into account. The Arrhenius thermal-chemical reaction coupling model for explosive initiation and the Lee-Tarver three-term pressure ignition model induced by local high pressure were integrated to accurately simulate the different initiation mechanisms of explosives under varying impact velocities, thereby predict complex physical phenomena during the impact loading of ammunition. These phenomena include high-speed contact, large plastic deformation of the metal casing, material fracture, heat conduction, explosive initiation, and the expansion work performed by chemical reaction products. Taking the numerical simulations of two typical impact scenarios—bullet impact on ammunition at 850 m/s and fragment impact at 1850 m/s—as examples, the influence of impact velocity on the initiation mechanisms of explosives and the overall response of ammunition was analyzed, with comparisons made against relevant experimental results. The proposed approach and findings provide reliable technical support for the optimization of impact-resistant design and safety assessment of ammunition.
  • loading
  • [1]
    马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述 [J]. 兵器装备工程学报, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.

    MA H H, WANG Y S, WANG G Y. Summary of foreign insensitive explosives [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.
    [2]
    NATO. Bullet attack test for munitions: NATO-STANAG 4241 [S]. NATO, 1991.
    [3]
    United States Department of Defense. Hazard assessment tests for non-nuclear munitions: MIL-STD-2105C-2003 [S]. Department of Defense, 2003.
    [4]
    NATO. Policy for introduction and assessment of insensitive munitions: STANAG 4439: 2010 [S]. NATO Standardization Office, 2010.
    [5]
    NATO. Guidance on the assessment and development of insensitive munitions (IM): AOP-39 [S]. NATO Standardization Agency, North Atlantic Treaty Organization (NATO), 2010.
    [6]
    国防科学技术工业委员会. 炸药试验方法: GJB 772A-1997 [S]. 国防科学技术工业委员会, 1997.

    Explosive test method: GJB 772A-1997 [S]. The Commission of Science, Technology and Industry for National Defense of the PRC, 1997.
    [7]
    KIMURA E, OYUMI Y. Sensitivities of azide polymer propellants in fast cook-off, card gap and bullet impact tests [J]. Journal of Energetic Materials, 1997, 15(2/3): 163–178. DOI: 10.1080/07370659708216080.
    [8]
    DAGLEY I J, HO S Y, NANUT V. Effects of the polymer matrix density on the shock, bullet impact and high strain-rate ignition sensitivity of polymer bonded explosives [J]. Propellants, Explosives, Pyrotechnics, 1997, 22(5): 296–300. DOI: 10.1002/prep.19970220509.
    [9]
    魏祥庚, 刘佩进, 何国强, 等. HTPB和NEPE固体推进剂枪击低易损性实验研究 [J]. 弹箭与制导学报, 2005, 25(4): 714–716. DOI: 10.3969/j.issn.1673-9728.2005.04.233.

    WEI X G, LIU P J, HE G Q, et al. Experimental research on the low vulnerability of HTPB and NEPE solid propellant [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 714–716. DOI: 10.3969/j.issn.1673-9728.2005.04.233.
    [10]
    李小柱, 裴养卫. 固体火箭发动机枪击低易损性试验研究 [J]. 弹箭与制导学报, 2000(2): 39–42. DOI: 10.3969/j.issn.1673-9728.2000.02.008.

    LI X Z, PEI Y W. Low vulnerability experimental study of solid rocket engine under popping condition [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2000(2): 39–42. DOI: 10.3969/j.issn.1673-9728.2000.02.008.
    [11]
    齐任超. 破片冲击作用下战斗部装药失效响应研究 [D]. 北京: 北京理工大学, 2015.

    QI R C. Research on the low vulnerability method of warhead case under the impact of fragment [D]. Beijing: Beijing Institute of Technology, 2015.
    [12]
    胡杰, 杜剑英, 陈桦, 等. 破片撞击不敏感弹药研究进展 [J]. 兵器装备工程学报, 2022, 43(8): 36–43. DOI: 10.11809/bqzbgcxb2022.08.006.

    HU J, DU J Y, CHEN H, et al. Research progress of fragment impact insensitive ammunition [J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 36–43. DOI: 10.11809/bqzbgcxb2022.08.006.
    [13]
    JONES D A, KEMISTER G, BORG R A J. Numerical simulation of detonation in condensed phase explosives: DSTO-TR-0705, AR-010-605 [R]. 1998.
    [14]
    代晓淦, 申春迎, 吕子剑, 等. 枪击试验中不同尺寸PBX-2炸药响应规律研究 [J]. 含能材料, 2008, 16(4): 432–435. DOI: 10.3969/j.issn.1006-9941.2008.04.017.

    DAI X G, SHEN C Y, LÜ Z J, et al. Reaction properties for different size PBX-2 explosives in bullet impact test [J]. Chinese Journal of Energetic Materials, 2008, 16(4): 432–435. DOI: 10.3969/j.issn.1006-9941.2008.04.017.
    [15]
    庄建华, 毛佳, 张为华, 等. 固体火箭发动机枪击过程数值模拟 [J]. 固体火箭技术, 2009, 32(4): 422–426. DOI: 10.3969/j.issn.1006-2793.2009.04.016.

    ZHUANG J H, MAO J, ZHANG W H, et al. Numerical simulation of the gunshot process of solid rocket motor [J]. Journal of Solid Rocket Technology, 2009, 32(4): 422–426. DOI: 10.3969/j.issn.1006-2793.2009.04.016.
    [16]
    HAMAIDE S, QUIDOT M, BRUNET J. Tactical solid rocket motors response to bullet impact [J]. Propellants, Explosives, Pyrotechnics, 1992, 17(3): 120–125. DOI: 10.1002/prep.19920170306.
    [17]
    濮赞泉. 破片撞击起爆战斗部影响因素及判据研究 [D]. 南京: 南京理工大学, 2016.

    PU Z Q. Study on influencing factors and criterion of fragment impact initiation warhead [D]. Nanjing: Nanjing University of Science and Technology, 2016.
    [18]
    刘沫言. 带壳装药的破片撞击和冲击波感度研究 [D]. 沈阳: 沈阳理工大学, 2020.

    LIU M Y. Study on fragment impingement and shock wave sensitivity with shell charge [D]. Shenyang: Shenyang Ligong University, 2020.
    [19]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375.
    [20]
    LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 1081–1106. DOI: 10.1002/fld.1650200824.
    [21]
    ZHANG X, CHEN Z, LIU Y. The material point method [M]. Oxford: Academic Press, 2017: 37-101.
    [22]
    LIU M B, LIU G R, LAM K Y, et al. Computer simulation of shaped charge detonation using meshless particle method [J]. Fragblast, 2003, 7(3): 181–202. DOI: 10.1076/frag.7.3.181.16789.
    [23]
    LIU M B, ZHANG Z L, FENG D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding [J]. Computational Mechanics, 2017, 60(3): 513–529. DOI: 10.1007/s00466-017-1420-5.
    [24]
    YANG G, HAN X, HU D A. Simulation of explosively driven metallic tubes by the cylindrical smoothed particle hydrodynamics method [J]. Shock Waves, 2015, 25(6): 573–587. DOI: 10.1007/s00193-015-0588-x.
    [25]
    YANG G, LIU R Q, HU D, et al. Simulation of one dimension shock initiation of condensed explosive by SPH method [J]. Engineering Computations, 2016, 33(2): 528–542. DOI: 10.1108/EC-03-2015-0076.
    [26]
    刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型 [J]. 爆炸与冲击, 2021, 41(1): 014201. DOI: 10.11883/bzycj-2020-0069.

    LIU S, ZHANG W G, LYU Z H. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors [J]. Explosion and Shock Waves, 2021, 41(1): 014201. DOI: 10.11883/bzycj-2020-0069.
    [27]
    ZHOU G H. A reproducing kernel particle method framework for modeling failure of structures subjected to blast loadings [M]. San Diego: University of California, 2016.
    [28]
    BAEK J, CHEN J S, ZHOU G H, et al. A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation [J]. Computational Mechanics, 2021, 67(6): 1601–1627. DOI: 10.1007/s00466-021-02008-2.
    [29]
    MA S, ZHANG X, LIAN Y P, et al. Simulation of high explosive explosion using adaptive material point method [J]. Computer Modeling in Engineering and Sciences, 2009, 39(2): 101–124. DOI: 10.3970/cmes.2009.039.101.
    [30]
    LIAN Y P, ZHANG X, ZHOU X, et al. Numerical simulation of explosively driven metal by material point method [J]. International Journal of Impact Engineering, 2011, 38(4): 238–246. DOI: 10.1016/j.ijimpeng.2010.10.031.
    [31]
    CUI X X, ZHANG X, SZE K Y, et al. An alternating finite difference material point method for numerical simulation of high explosive explosion problems [J]. Computer Modeling in Engineering and Sciences, 2013, 92(5): 507–538. DOI: 10.3970/cmes.2013.092.507.
    [32]
    LI B, HABBAL F, ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [33]
    WANG H, LIAO H M, FAN Z Y, et al. The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112958. DOI: 10.1016/j.cma.2020.112958.
    [34]
    廖祜明, 黎波, 樊江, 等. 超高速撞击下碎片云的OTM分析 [J]. 爆炸与冲击, 2022, 42(10): 103301. DOI: 10.11883/bzycj-2021-0275.

    LIAO H M, LI B, FAN J, et al. OTM analysis of debris cloud under hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(10): 103301. DOI: 10.11883/bzycj-2021-0275.
    [35]
    JIANG H, SCOTT V, LI B. Modeling and simulations of high and hypervelocity impact of small ice particles [J]. International Journal of Impact Engineering, 2021, 155: 103906. DOI: 10.1016/j.ijimpeng.2021.103906.
    [36]
    WANG H, LI X B, PHIPPS M, et al. Numerical and experimental study of hot pressing technique for resin-based friction composites [J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106737. DOI: 10.1016/j.compositesa.2021.106737.
    [37]
    JIANG H, WANG H, SCOTT V, et al. Numerical analysis of oblique hypervelocity impact damage to space structural materials by ice particles in cryogenic environment [J]. Acta Astronautica, 2022, 195: 392–404. DOI: 10.1016/j.actaastro.2022.02.029.
    [38]
    马天宝, 粟鑫, 郝莉. 基于OTM方法的超高速碰撞问题数值模拟 [J]. 北京理工大学学报, 2020, 40(6): 617–622. DOI: 10.15918/j.tbit1001-0645.2019.120.

    MA T B, SU X, HAO L. Numerical simulation of hypervelocity impact based on the optimal transportation meshfree method [J]. Transactions of Beijing Institute of Technology, 2020, 40(6): 617–622. DOI: 10.15918/j.tbit1001-0645.2019.120.
    [39]
    王浩, 廖祜明, 王淼辉, 等. 带相变热流固耦合问题的数值方法及金属增材制造仿真 [J]. 中国科学: 物理学 力学 天文学, 2022, 52(10): 104713. DOI: 10.1360/SSPMA-2022-0222.

    WANG H, LIAO H M, WANG M H, et al. Numerical approach for a strongly coupled thermomechanical process with multi-phase transition and applications in additive manufacturing [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(10): 104713. DOI: 10.1360/SSPMA-2022-0222.
    [40]
    YANG Q, STAINIER L, ORTIZ M. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(2): 401–424. DOI: 10.1016/j.jmps.2005.08.010.
    [41]
    CEN. Stainless steels. Part 1: list of stainless steels: BS EN 10088-1: 2023 [S]. Standards Policy and Strategy Committee, 2024.
    [42]
    GARDNER L, INSAUSTI A, NG K T, et al. Elevated temperature material properties of stainless steel alloys [J]. Journal of Constructional Steel Research, 2010, 66(5): 634–647. DOI: 10.1016/j.jcsr.2009.12.016.
    [43]
    Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [44]
    LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives: UCID-16189 [R]. Livermore: University of California, 1973. DOI: 10.2172/4479737.
    [45]
    ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods [J]. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202. DOI: 10.1002/nme.1534.
    [46]
    FAN J, LIAO H M, WANG H, et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis [J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 373–392. DOI: 10.1007/s00158-017-1760-y.
    [47]
    SCHMIDT B, FRATERNALI F, ORTIZ M. Eigenfracture: an eigendeformation approach to variational fracture [J]. Multiscale Modeling and Simulation, 2009, 7(3): 1237–1266. DOI: 10.1137/080712568.
    [48]
    PANDOLFI A, ORTIZ M. An eigenerosion approach to brittle fracture [J]. International Journal for Numerical Methods in Engineering, 2012, 92(8): 694–714. DOI: 10.1002/nme.4352.
    [49]
    FAN Z Y, LIAO H M, JIANG H, et al. A dynamic adaptive eigenfracture method for failure in brittle materials [J]. Engineering Fracture Mechanics, 2021, 244: 107540. DOI: 10.1016/j.engfracmech.2021.107540.
    [50]
    贾宪振, 南海, 王晓峰, 等. 有氧化剂(AP)含铝炸药水中爆炸数值模拟 [J]. 科学技术与工程, 2015, 15(6): 1–4,11. DOI: 10.3969/j.issn.1671-1815.2015.06.001.

    JIA X Z, NAN H, WANG X F, et al. Numerical simulation of underwater explosion of aluminized explosive containingoxidizer (AP) [J]. Science Technology and Engineering, 2015, 15(6): 1–4,11. DOI: 10.3969/j.issn.1671-1815.2015.06.001.
    [51]
    STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratories, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (181) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return