| Citation: | CHEN Ding, YU Zeyang, YAO Xuehao, ZHOU Zhangtao, WANG Mengyuan, HUANG Dan. Modeling and analysis of non-explosive underwater shock loading using a PD-SPH coupling method[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0180 |
| [1] |
DESHPANDE V S, HEAVER A, Fleck N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. DOI: 10.1098/rspa.2005.1604.
|
| [2] |
TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [M]//BATCHELOR G KThe Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 287-303.
|
| [3] |
ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
|
| [4] |
KAZEMAHVAZI S, RADFORD D, DESHPANDE V, et al. Dynamic failure of clamped circular plates subjected to an underwater shock [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2007–2023. DOI: 10.2140/jomms.2007.2.2007.
|
| [5] |
任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究 [J]. 爆炸与冲击, 2014, 34(3): 334–339. DOI: 10.11883/1001-1455(2014)03-0334-06.
REN P, ZHANG W, HUANG W, et al. Research on non-explosive underwater shock loading device [J]. Explosion and Shock Waves, 2014, 34(3): 334–339. DOI: 10.11883/1001-1455(2014)03-0334-06.
|
| [6] |
周章涛, 刘建湖, 刘国振, 等. 水下爆炸空化研究进展 [J]. 装备环境工程, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.2023.09.002.
ZHOU Z T, LIU J H, LIU G Z, et al. Research progress of underwater explosion cavitation [J]. Equipment Environmental Engineering, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.2023.09.002.
|
| [7] |
柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真 [J]. 应用数学和力学, 2021, 42(1): 1–14. DOI: 10.21656/1000-0887.410262.
LIU Z L, CHU D Y, WANG T, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading [J]. Applied Mathematics and Mechanics, 2021, 42(1): 1–14. DOI: 10.21656/1000-0887.410262.
|
| [8] |
MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399–406. DOI: 10.1006/jcph.1994.1034.
|
| [9] |
LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions [J]. Science China Physics, Mechanics & Astronomy, 2019, 62(8): 984701. DOI: 10.1007/s11433-018-9357-0.
|
| [10] |
周若璞, 曾治鑫, 张雄. 超高速碰撞下相变效应的交错网格物质点法研究 [J]. 计算力学学报, 2024, 41(1): 81–90. DOI: 10.7511/jslx20230816006.
ZHOU R P, ZENG Z X, ZHANG X. The staggered grid material point method (SGMP) simulation of phase transformation in hyper-velocity impact [J]. Chinese Journal of Computational Mechanics, 2024, 41(1): 81–90. DOI: 10.7511/jslx20230816006.
|
| [11] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179–196. DOI: 10.1016/0045-7825(94)90112-0.
|
| [12] |
SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
|
| [13] |
黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用 [J]. 力学进展, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.
HUANG D, ZHANG Q, QIAO P Z, et al. A review on peridynamics (PD) method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.
|
| [14] |
吴远丽, 刘立胜, 赖欣, 等. 陶瓷复合结构抗侵彻行为的近场动力学研究 [J]. 计算机仿真, 2021, 38(10): 268–274. DOI: 10.3969/j.issn.1006-9348.2021.10.054.
WU Y L, LIU L S, LAI X, et al. Peridynamics simulation of ceramic composite structures against penetration [J]. Computer Simulation, 2021, 38(10): 268–274. DOI: 10.3969/j.issn.1006-9348.2021.10.054.
|
| [15] |
陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
|
| [16] |
王涵, 黄丹, 徐业鹏, 等. 非常规态型近场动力学热黏塑性模型及其应用 [J]. 力学学报, 2018, 50(4): 810–819. DOI: 10.6052/0459-1879-18-113.
WANG H, HUANG D, XU Y P, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810–819. DOI: 10.6052/0459-1879-18-113.
|
| [17] |
马福临, 杨娜娜, 赵天佑, 等. 冲击波-破片群联合作用下舰船复合材料结构近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
MA F L, YANG N N, ZHAO T Y, et al. Peridynamic damage simulation of ship composite structures subjected to combined action of shock wave and fragments [J]. Explosion and Shock Waves, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
|
| [18] |
SUN P N, LE TOUZÉ D, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 2: extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations [J]. Journal of Computational Physics, 2021, 426: 109936. DOI: 10.1016/j.jcp.2020.109936.
|
| [19] |
LIANG C, HUANG W X, CHEN D. A pressure-dependent adaptive resolution scheme for smoothed particle hydrodynamics simulation of underwater explosion [J]. Ocean Engineering, 2023, 270: 113695. DOI: 10.1016/j.oceaneng.2023.113695.
|
| [20] |
姚学昊, 陈丁, 武立伟, 等. 流固耦合破坏分析的多分辨率PD-SPH方法 [J]. 力学学报, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-22-268.
YAO X H, CHEN D, WU L W, et al. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-22-268.
|
| [21] |
时浩天, 郭力. 模拟流体冲击致结构破坏问题的SPH-PD耦合方法 [J]. 振动与冲击, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.
SHI H T, GUO L. SPH-PD coupled method for simulation of structure failure impacted by fluid [J]. Journal of Vibration and Shock, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.
|
| [22] |
SUN W K, ZHANG L W, LIEW K M. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298. DOI: 10.1016/j.cma.2020.113298.
|
| [23] |
SHI H T, YUAN G Y, NI B Y, et al. Quasi-brittle ice breaking mechanisms by high-velocity water jet impacts: an investigation based on PD-SPH coupling model and experiments [J]. Journal of the Mechanics and Physics of Solids, 2024, 191: 105783. DOI: 10.1016/j.jmps.2024.105783.
|
| [24] |
HUANG X P, ZHU B, CHEN Y M. A coupled and parallel peridynamics–SPH modeling and simulation of buried explosion induced soil fragmentation and cratering [J]. Computers and Geotechnics, 2024, 178: 106942. DOI: 10.1016/j.compgeo.2024.106942.
|
| [25] |
YAO X H, HUANG D. Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing [J]. Computers & Structures, 2022, 270: 106847. DOI: 10.1016/j.compstruc.2022.106847.
|
| [26] |
REN B, FAN H F, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves [J]. Computational Mechanics, 2015, 55(2): 287–302. DOI: 10.1007/s00466-014-1101-6.
|
| [27] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21: 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
| [28] |
BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
|
| [29] |
任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy structures [D]. Harbin: Harbin Institute of Technology, 2014.
|
| [30] |
MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/14/15/16): 1526–1542. DOI: 10.1016/j.cma.2010.12.016.
|
| [31] |
CHEN D, HUANG W X, LIANG C. A SPH method of high accuracy and efficiency for low and medium Reynolds number flow problems [J]. Computational Particle Mechanics, 2024, 11(4): 1613–1626. DOI: 10.1007/s40571-023-00682-y.
|
| [32] |
XU J G, WU G, FENG D C, et al. Probabilistic multi-hazard fragility analysis of RC bridges under earthquake-tsunami sequential events [J]. Engineering Structures, 2021, 238: 112250. DOI: 10.1016/j.engstruct.2021.112250.
|
| [33] |
LIU M B, XIE W P, LIU G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003.
|
| [34] |
CHEN D, YAO X H, HUANG D, et al. A multi-resolution smoothed particle hydrodynamics with multi-GPUs acceleration for three-dimensional fluid-structure interaction problems [J]. Ocean Engineering, 2024, 296: 117017. DOI: 10.1016/j.oceaneng.2024.117017.
|
| [35] |
GEBARD G, Slater H. The impact tube: a new experimental technique for applying impulse loads [C]//TATNALL F G. Symposium on Impact Testing. Phila: ASTM, 1956: 94–109. DOI: 10.1520/STP47581S.
|
| [36] |
陈丁, 黄文雄, 黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用 [J]. 岩土力学, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.
CHEN D, HUANG W X, HUANG D. A frictional contact algorithm in smoothed particle method with application in large deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.
|