• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
ZHAO Chunfeng, WU Yixiu, XIANG Siqi, LI Xiaojie. Blast damage assessment model of PC slabs based on XGBoost[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0250
Citation: ZHAO Chunfeng, WU Yixiu, XIANG Siqi, LI Xiaojie. Blast damage assessment model of PC slabs based on XGBoost[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0250

Blast damage assessment model of PC slabs based on XGBoost

doi: 10.11883/bzycj-2025-0250
  • Received Date: 2025-08-10
  • Rev Recd Date: 2025-09-25
  • Available Online: 2025-09-30
  • Prefabricated building structures have been widely applied in civil engineering due to their advantages of energy conservation, environmental protection, controllable quality, and efficient construction. As the core load-bearing components of prefabricated building structures, precast reinforced concrete (PC) slabs are vulnerable to threats from gas explosions, industrial explosions, and terrorist attacks. To accurately assess the damage state of PC slabs under explosion, enhance structural blast resistance, and reduce casualties, an explosion response dataset of PC slabs was constructed. Six geometric parameters (slab thickness/length/width, steel reinforcement ratio, compressive strength of concrete, etc.) and two explosion load parameters (explosive weight and explosive distance) were selected as input features. Three machine learning algorithms (GPR, RF, and XGBoost) were used to predict the maximum displacement of PC slabs, and their prediction accuracies are compared by root mean square error, coefficient of determination, mean absolute error, scattering index, and comprehensive performance objective function. Furthermore, a damage classification evaluation model based on the support rotation angle damage criterion is proposed. The performance differences of the model under three criteria are analyzed by confusion matrix and five classification indices (accuracy, precision, recall, F1-score, and Kappa coefficient), and compared with simplified models and empirical prediction methods. The research results indicate that in terms of maximum displacement prediction for PC slabs under explosion loads, the XGBoost model demonstrates the best performance among the three machine learning models (GPR、RF and XGBoost). Specifically, the fitting degree of XGBoost is superior to those of GPR and RF models. Meanwhile, and the XGBoost shows the most outstanding comprehensive performance, with a damage recognition accuracy of 92.5%, which demonstrates its high-efficiency in identifying different damage types. The XGBoost-based damage classification evaluation model for PC slabs under explosion loads exhibits powerful performance, providing important references for structural blast resistance design and rapid post-blast damage assessment.
  • loading
  • [1]
    YE X, ZHAO C F, HE K C, et al. Blast behaviors of precast concrete sandwich EPS panels: FEM and theoretical analysis [J]. Engineering Structures, 2021, 226: 111345. DOI: 10.1016/j.engstruct.2020.111345.
    [2]
    ZHAO C F, YE X, HE K C, et al. Numerical study and theoretical analysis on blast resistance of fabricated concrete slab [J]. Journal of Building Engineering, 2020, 32: 101760. DOI: 10.1016/j.jobe.2020.101760.
    [3]
    李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应 [J]. 爆炸与冲击, 2022, 42(7): 075103. DOI: 10.11883/bzycj-2021-0495.

    LI S T, WANG W, LIANG S F, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load [J]. Explosion and Shock Waves, 2022, 42(7): 075103. DOI: 10.11883/bzycj-2021-0495.
    [4]
    NORRIS C H. Structural design for dynamic loads [M]. New York: McGraw-Hill, 1959.
    [5]
    苏琼, 程月华, 吴昊. 爆炸荷载作用下UHPC板的弯曲损伤评估 [J]. 爆炸与冲击, 2023, 43(12): 125103. DOI: 10.11883/bzycj-2023-0160.

    SU Q, CHENG Y H, WU H. Flexural damage assessment for UHPC panels under blast loadings [J]. Explosion and Shock Waves, 2023, 43(12): 125103. DOI: 10.11883/bzycj-2023-0160.
    [6]
    LI Q M, MENG H. Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model [J]. Journal of Engineering Mechanics, 2002, 128(1): 87–92. DOI: 10.1061/(ASCE)0733-9399(2002)128:1(87).
    [7]
    WANG W, ZHANG D, LU F Y, et al. Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method [J]. Journal of Central South University, 2013, 20(2): 510–519. DOI: 10.1007/s11771-013-1513-z.
    [8]
    PARK G K, KWAK H G, FILIPPOU F C. Evaluation of nonlinear behavior and resisting capacity of reinforced concrete columns subjected to blast loads [J]. Engineering Failure Analysis, 2018, 93: 268–288. DOI: 10.1016/j.engfailanal.2018.07.024.
    [9]
    NADERPOUR H, MIRRASHID M, PARSA P. Failure mode prediction of reinforced concrete columns using machine learning methods [J]. Engineering Structures, 2021, 248: 113263. DOI: 10.1016/j.engstruct.2021.113263.
    [10]
    SANDEEP M S, TIPRAK K, KAEWUNRUEN S, et al. Shear strength prediction of reinforced concrete beams using machine learning [J]. Structures, 2023, 47: 1196–1211. DOI: 10.1016/j.istruc.2022.11.140.
    [11]
    李般若, 霍璞, 喻君. 基于GNN的爆炸压力时空分布预测模型 [J]. 爆炸与冲击, 2025: 1–19. https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0503. DOI: 10.11883/bzycj-2024-0503.

    LI B R, HUO P, YU J. GNN-based predictive model for spatial and temporal distribution of blast overpressure [J]. Explosion and Shock Waves, 2025: 1–19. DOI: 10.11883/bzycj-2024-0503.
    [12]
    ZHAO C F, ZHU Y F, ZHOU Z H. Machine learning-based approaches for predicting the dynamic response of RC slabs under blast loads [J]. Engineering Structures, 2022, 273: 115104. DOI: 10.1016/j.engstruct.2022.115104.
    [13]
    ZHAO C, YE X, HE K, et al. Numerical study and theoretical analysis on blast resistance of fabricated concrete slab [J]. Journal of Building Engineering, 2020, 32(8): 101760. DOI: 10.1016/j.jobe.2020.101760.
    [14]
    杜永峰, 靳振飞. 灌浆套筒连接装配式剪力墙爆炸响应及参数分析 [J]. 世界地震工程, 2020, 36(4): 62–70. DOI: 10.3969/j.issn.1007-6069.2020.04.008.

    DU Y F, JIN Z F. Explosive response and parameters analysis of prefabricated shear wall connected by grouting sleeve [J]. World Earthquake Engineering, 2020, 36(4): 62–70. DOI: 10.3969/j.issn.1007-6069.2020.04.008.
    [15]
    周兆鹏, 闫秋实, 田栓柱, 等. 爆炸荷载作用下装配式钢筋混凝土板抗爆性能试验研究 [J]. 天津大学学报(自然科学与工程技术版), 2022, 55(6): 611–620. DOI: 10.11784/tdxbz202105056.

    ZHOU Z P, YAN Q S, TIAN S Z, et al. Experimental study on antiexplosion performance of precast concrete slabs under explosion load [J]. Journal of Tianjin University (Science and Technology), 2022, 55(6): 611–620. DOI: 10.11784/tdxbz202105056.
    [16]
    TIAN S Z, YAN Q S, DU X L, et al. Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load [J]. Journal of Building Engineering, 2023, 70: 106425. DOI: 10.1016/j.jobe.2023.106425.
    [17]
    董刚. 爆炸作用下装配式钢筋混凝土叠合板动态响应研究 [D]. 长春: 吉林建筑大学, 2023. DOI: 10.27714/d.cnki.gjljs.2023.000411.

    DONG G. Study on dynamic response of prefabricated reinforced concrete laminate slab under blast loading [D]. Changchun: Jilin Jianzhu University, 2023. DOI: 10.27714/d.cnki.gjljs.2023.000411.
    [18]
    李建武, 闫秋实, 李述涛, 等. 装配式钢筋混凝土叠合板抗爆性能影响参数分析 [J]. 防护工程, 2022, 44(2): 17–21. DOI: 10.3969/j.issn.1674-1854.2022.02.003.

    LI J W, YAN Q S, LI S T, et al. Analysis of parameters affecting anti-blast performance of prefabricated reinforced concrete laminated slabs [J]. Protective Engineering, 2022, 44(2): 17–21. DOI: 10.3969/j.issn.1674-1854.2022.02.003.
    [19]
    CHOI J H, CHOI S J, KIM J H J, et al. Evaluation of blast resistance and failure behavior of prestressed concrete under blast loading [J]. Construction and Building Materials, 2018, 173: 550–572. DOI: 10.1016/j.conbuildmat.2018.04.047.
    [20]
    WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. DOI: 10.1016/j.dt.2021.07.005.
    [21]
    赵春风, 向思麒, 朱玉富. 基于机器学习的RC板爆炸两阶段损伤评估模型 [J]. 建筑结构学报, 2025, 46(1): 212–222. DOI: 10.14006/j.jzjgxb.2023.0727.

    ZHAO C F, XIANG S Q, ZHU Y F. A two-stage damage assessment model for RC slab under explosion based on machine learning [J]. Journal of Building Structures, 2025, 46(1): 212–222. DOI: 10.14006/j.jzjgxb.2023.0727.
    [22]
    李忠献, 师燕超. 建筑结构抗爆分析理论 [M]. 北京: 科学出版社, 2015.

    LI Z X, SHI Y C. Blast analysis of building structures [M]. Beijing: Science Press, 2015.
    [23]
    LI K, LONG Y P, WANG H, et al. Modeling and sensitivity analysis of concrete creep with machine learning methods [J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021206. DOI: 10.1061/(ASCE)MT.1943-5533.0003843.
    [24]
    YU J B. State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble [J]. Reliability Engineering & System Safety, 2018, 174: 82–95. DOI: 10.1016/j.ress.2018.02.022.
    [25]
    BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: 10.1023/A:1010933404324.
    [26]
    张成玺. 爆炸载荷下钢筋混凝土构件的动态响应及损伤评估 [D]. 济南: 山东建筑大学, 2024. DOI: 10.27273/d.cnki.gsajc.2024.000353.

    ZHANG C X. Dynamic responseand damage assessment of reinforced concrete members under explosive loading [D]. Ji’an: Shandong Jianzhu University, 2024. DOI: 10.27273/d.cnki.gsajc.2024.000353.
    [27]
    LIAO Y, SHI S Q, CHEN S, et al. Numerical evaluation of the retrofit effectiveness for polyurea-woven glass fiber mesh composite retrofitted RC slab subjected to blast loading [J]. Structures, 2022, 36: 215–232. DOI: 10.1016/j.istruc.2021.12.012.
    [28]
    汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012.
    [29]
    李天华, 赵均海, 魏雪英, 等. 爆炸荷载下钢筋混凝土板的动力响应及参数分析 [J]. 建筑结构, 2012, 42(S1): 786–790. DOI: 10.19701/j.jzjg.2012.s1.194.

    LI T H, ZHAO J H, WEI X Y, et al. Dynamic response and parametric analysis on reinforced concrete slabs under blast loadings [J]. Building Structure, 2012, 42(S1): 786–790. DOI: 10.19701/j.jzjg.2012.s1.194.
    [30]
    TMS-1300. Structures to Resist the Effects of Accidental Explosions[S]. Washington, D. C: Department of the Army, the Navy, and the Air Force, 1990.
    [31]
    于晓辉, 王猛, 宁超列. 基于机器学习的钢筋混凝土柱失效模式两阶段判别方法 [J]. 建筑结构学报, 2022, 43(8): 220–231. DOI: 10.14006/j.jzjgxb.2020.0392.

    YU X H, WANG M, NING C L. A machine-learning-based two-step method for failure mode classification of reinforced concrete columns [J]. Journal of Building Structures, 2022, 43(8): 220–231. DOI: 10.14006/j.jzjgxb.2020.0392.
    [32]
    COHEN J. A coefficient of agreement for nominal scales [J]. Educational and Psychological Measurement, 1960, 20: 37–46. DOI: 10.1177/001316446002000104.
    [33]
    MCVAY M K, STATION U S A E W E, ENGINEERS U S A C O. Spall Damage of Concrete Structures [M]. U. S. Army Engineer Waterways Experiment Station, 1988.
    [34]
    LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(11)

    Article Metrics

    Article views (207) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return