| Citation: | HAN Sihao, LI Chunlei, SU Buyun, JING Lin, HAN Qiang, YAO Xiaohu. Machine learning-driven low-velocity impact response prediction and multi-objective optimization of origami metamaterial sandwich[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0282 |
| [1] |
敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展 [J]. 力学与实践, 2015, 37(1): 1–24,48. DOI: 10.6052/1000-0879-14-180.
JING L, WANG Z H, ZHAO L M. Advances in studies of the mechanical performance of cellular metals and related sandwich structures [J]. Mechanics in Engineering, 2015, 37(1): 1–24,48. DOI: 10.6052/1000-0879-14-180.
|
| [2] |
崔天宁, 秦庆华. 轻质多孔夹芯结构的弹道侵彻行为研究进展 [J]. 力学进展, 2023, 53(2): 395–432. DOI: 10.6052/1000-0992-23-002.
CUI T N, QIN Q H. Ballistic performance of lightweight cellular sandwich structures: a review [J]. Advances in Mechanics, 2023, 53(2): 395–432. DOI: 10.6052/1000-0992-23-002.
|
| [3] |
余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
|
| [4] |
张元瑞, 朱玉东, 王克鸿, 等. 多胞子弹冲击泡沫夹芯梁的动力学响应分析 [J]. 爆炸与冲击, 2024, 44(9): 091442. DOI: 10.11883/bzycj-2024-0045.
ZHANG Y R, ZHU Y D, WANG K H, et al. Dynamic response analysis of cellular projectile impacting foam sandwich beam [J]. Explosion and Shock Waves, 2024, 44(9): 091442. DOI: 10.11883/bzycj-2024-0045.
|
| [5] |
苏兴亚, 敬霖, 赵隆茂. 爆炸载荷下分层梯度泡沫铝夹芯板的失效模式与抗冲击性能 [J]. 爆炸与冲击, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
SU X Y, JING L, ZHAO L M. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Explosion and Shock Waves, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
|
| [6] |
李雨薇, 易昶成, 刘志芳, 等. 剪切增稠液填充蜂窝夹芯板的低速冲击响应 [J]. 爆炸与冲击, 2025, 45(1): 013103. DOI: 10.11883/bzycj-2024-0095.
LI Y W, YI C C, LIU Z F, et al. Low-velocity impact responses of shear-thickening fluid-filled honeycomb sandwich structures [J]. Explosion and Shock Waves, 2025, 45(1): 013103. DOI: 10.11883/bzycj-2024-0095.
|
| [7] |
于相龙, 周济. 力学超材料的构筑及其超常新功能 [J]. 中国材料进展, 2019, 38(1): 14–21. DOI: 10.7502/j.issn.1674-3962.2019.01.02.
YU X L, ZHOU J. Mechanical metamaterials: architected materials and unexplored properties [J]. Materials China, 2019, 38(1): 14–21. DOI: 10.7502/j.issn.1674-3962.2019.01.02.
|
| [8] |
张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述 [J]. 中国舰船研究, 2023, 18(2): 1–19,47. DOI: 10.19693/j.issn.1673-3185.03139.
ZHANG L M, YANG D Q. Review on the applied research of mechanical and acoustic metamaterials in ship engineering [J]. Chinese Journal of Ship Research, 2023, 18(2): 1–19,47. DOI: 10.19693/j.issn.1673-3185.03139.
|
| [9] |
CHEN C Q, HE Y L, XU R, et al. Dynamic behaviors of sandwich panels with 3D-printed gradient auxetic cores subjected to blast load [J]. International Journal of Impact Engineering, 2024, 188: 104943. DOI: 10.1016/j.ijimpeng.2024.104943.
|
| [10] |
JIANG Z F, RONG J L, CHEN Z C, et al. Deformation mechanisms and energy absorption characteristics of 3D-printed negative Poisson's ratio sandwich structures subjected to underwater impulsive loading [J]. International Journal of Impact Engineering, 2025, 203: 105355. DOI: 10.1016/j.ijimpeng.2025.105355.
|
| [11] |
方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展 [J]. 力学学报, 2022, 54(1): 1–38. DOI: 10.6052/0459-1879-21-478.
FANG H B, WU H P, LIU Z L, et al. Advances in the dynamics of origami structures and origami metamaterials [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1–38. DOI: 10.6052/0459-1879-21-478.
|
| [12] |
岳晓奎, 朱明珠, 耿浩华, 等. 折纸超材料及其在航空航天领域的应用与展望 [J]. 航空学报, 2025, 46(6): 531382. DOI: 10.7527/S1000-6893.2024.31382.
YUE X K, ZHU M Z, GENG H H, et al. Origami metamaterials and their applications and prospects in aerospace field [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531382. DOI: 10.7527/S1000-6893.2024.31382.
|
| [13] |
HE Y L, ZHANG P W, YOU Z, et al. Programming mechanical metamaterials using origami tessellations [J]. Composites Science and Technology, 2020, 189: 108015. DOI: 10.1016/j.compscitech.2020.108015.
|
| [14] |
HE Y L, CHEN C Q, SUN J P, et al. Deformation and failure of 3D-Printed origami-inspired sandwich beam under blast loading [J]. International Journal of Impact Engineering, 2025, 206: 105471. DOI: 10.1016/j.ijimpeng.2025.105471.
|
| [15] |
何远鹏, 王凌峰, 杨秋松, 等. 多折角梯形台面折纸夹层结构的冲击防护性能 [J]. 爆炸与冲击, 2024, 44(4): 043103. DOI: 10.11883/bzycj-2023-0315.
HE Y P, WANG L F, YANG Q S, et al. Impact response of TPS folded sandwich structure [J]. Explosion and Shock Waves, 2024, 44(4): 043103. DOI: 10.11883/bzycj-2023-0315.
|
| [16] |
ZHANG J J, LU G X, ZHANG Y, et al. A study on ballistic performance of origami sandwich panels [J]. International Journal of Impact Engineering, 2021, 156: 103925. DOI: 10.1016/j.ijimpeng.2021.103925.
|
| [17] |
QI J Q, LI C, TIE Y, et al. Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading [J]. Materials & Design, 2021, 207: 109837. DOI: 10.1016/j.matdes.2021.109837.
|
| [18] |
代铁琳, 金刘超, 尚宸, 等. 超材料的智能设计研究进展 [J]. 计算机辅助设计与图形学学报, 2025, 37(1): 1–27. DOI: 10.3724/SP.J.1089.2024-00279.
DAI T L, JIN L C, SHANG C, et al. Advances in intelligent design of metamaterials [J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(1): 1–27. DOI: 10.3724/SP.J.1089.2024-00279.
|
| [19] |
王清华, 徐丰, 郭伟国. 基于ANN-GA协同寻优的动态拉伸试样尺寸优化方法 [J]. 爆炸与冲击, 2022, 42(1): 014201. DOI: 10.11883/bzycj-2021-0218.
WANG Q H, XU F, GUO W G. A method of geometry optimization for dynamic tensile specimen based on artificial neural network and genetic algorithm [J]. Explosion and Shock Waves, 2022, 42(1): 014201. DOI: 10.11883/bzycj-2021-0218.
|
| [20] |
XIAO L J, SHI G Q, SONG W D. Machine learning predictions on the compressive stress-strain response of lattice-based metamaterials [J]. International Journal of Solids and Structures, 2024, 300: 112893. DOI: 10.1016/j.ijsolstr.2024.112893.
|
| [21] |
SHEN X Y, HU Q R, ZHU D F, et al. Dynamic mechanical response prediction model of honeycomb structure based on machine learning method and finite element method [J]. International Journal of Impact Engineering, 2024, 184: 104825. DOI: 10.1016/j.ijimpeng.2023.104825.
|
| [22] |
ZHU Z H, KONG X S, ZHOU H, et al. A hybrid data-driven machine learning framework for predicting the impact resistance of composite armor [J]. International Journal of Impact Engineering, 2025, 195: 105125. DOI: 10.1016/j.ijimpeng.2024.105125.
|
| [23] |
BROWN N K, GARLAND A P, FADEL G M, et al. Deep reinforcement learning for the rapid on-demand design of mechanical metamaterials with targeted nonlinear deformation responses [J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106998. DOI: 10.1016/j.engappai.2023.106998.
|
| [24] |
ZHU S W, CHEN H, YANG X Q, et al. Rubik’s cube as in-situ programmable matter and a reconfigurable mechanical metamaterial [J]. Science China Technological Sciences, 2024, 67(10): 3221–3234. DOI: 10.1007/s11431-024-2681-1.
|
| [25] |
ZHENG H K, LI C L, SUN Y, et al. Impact protection mechanism and failure prediction of modular hierarchical honeycomb system with self-locking effect [J]. International Journal of Impact Engineering, 2025, 201: 105274. DOI: 10.1016/j.ijimpeng.2025.105274.
|
| [26] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
|
| [27] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]//Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1. Montreal: MIT Press, 2015: 91-99. DOI: 10.5555/2969239.2969250.
|
| [28] |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. ArXiv Preprint, 2017, arXiv: 1711.05101. DOI: 10.48550/arXiv.1711.05101.
|
| [29] |
WATKINS C J C H, DAYAN P. Q-learning [J]. Machine Learning, 1992, 8(3): 279–292. DOI: 10.1007/BF00992698.
|
| [30] |
HAN S H, LI C L, HAN Q, et al. Machine learning-aided prediction and customization on mechanical response and wave attenuation of multifunctional kiri/origami metamaterials [J]. Extreme Mechanics Letters, 2025, 74: 102276. DOI: 10.1016/j.eml.2024.102276.
|