• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
WANG Haisheng, GUAN Longhua, ZHU Bin, LU Qiang, DING Yang, LI Junchao, WANG Yubing, LI Weijun, PANG Zheng. Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0290
Citation: WANG Haisheng, GUAN Longhua, ZHU Bin, LU Qiang, DING Yang, LI Junchao, WANG Yubing, LI Weijun, PANG Zheng. Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0290

Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil

doi: 10.11883/bzycj-2025-0290
  • Received Date: 2025-09-04
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-04
  • Hypergravity centrifuge model testing serves as an effective method for simulating prototype explosion effects, whose successful application relies on soil simulants capable of replicating the dynamic response of in-situ soil. To address the challenges of particle size effects and material similarity in centrifuge modeling of explosions in sandy gravel, this study aims to establish a systematic methodology for the preparation and validation of such simulants. Through theoretical analysis, the soil key parameters governing ground shock effects under explosions were identified as density and wave velocity (wave impedance), which are fundamentally controlled by the soil's gradation characteristics. Based on this premise, twelve types of simulants with varying maximum particle sizes were systematically prepared using four scaling methods: the removal method, equal quantity replacement method, similar gradation method, and hybrid method. Through void ratio tests and bender element testing under effective confining pressure, quantitative relationships were revealed between the extreme void ratios of sandy gravel and its fines content and mean particle size. Based on this, an empirical predictive model for the small strain elastic modulus was established. Comparison of the model-predicted wave velocities with in-situ measured data indicates that the coefficient of uniformity, fines content, and mean particle size are the key controlling indices for achieving dynamic similarity in sandy gravel under explosion loading. Among these, the simulant prepared by the equal quantity replacement method, with a maximum particle size of 10 mm, demonstrated the closest equivalence to the in-situ soil in terms of the aforementioned indices. Hypergravity centrifuge explosion tests using this equivalent simulant further verified that the attenuation law of normalized peak accelerations within the source plane corresponds highly consistently with the in-situ data. This research confirms that by controlling key gradation indices and employing the equal quantity replacement method, it is possible to successfully prepare simulants that are equivalent to in-situ sandy gravel in their dynamic response to explosions. This provides a practical and effective technical pathway for centrifuge model testing in related fields.
  • loading
  • [1]
    杨峰, 翟红波, 苏健军, 等. 浅埋爆炸下爆坑和冲击波特性研究进展 [J]. 工程爆破, 2023, 29(5): 86–95,119. DOI: 10.19931/j.eb.20220098.

    YANG F, ZHAI H B, SU J J, et al. Research progress of crater and shock wave characteristics under shallow buried condition [J]. Engineering Blasting, 2023, 29(5): 86–95,119. DOI: 10.19931/j.eb.20220098.
    [2]
    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution [J]. Science China Technological Sciences, 2022, 65(12): 2791–2808. DOI: 10.1007/s11431-022-2125-x.
    [3]
    马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究 [J]. 岩石力学与工程学报, 2011, 30(S1): 3172–3178.

    MA L Q, ZHANG J M. Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3172–3178.
    [4]
    管龙华, 卢强, 赵凤奎, 等. 砂土爆炸成坑离心模型试验相似律研究 [J]. 岩土工程学报, 2024, 46(7): 1462–1470. DOI: 10.11779/CJGE20230751.

    GUAN L H, LU Q, ZHAO F K, et al. Scaling laws for centrifuge modelling of explosion-induced cratering in sand [J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462–1470. DOI: 10.11779/CJGE20230751.
    [5]
    岳松林, 邱艳宇, 范鹏贤, 等. 岩石中爆炸成坑效应的模型试验方法及对比分析 [J]. 岩石力学与工程学报, 2014, 33(9): 1925–1931. DOI: 10.13722/j.cnki.jrme.2014.09.024.

    YUE S L, QIU Y Y, FAN P X, et al. Modeling experiment methods for cratering effects of explosions in rocks and comparative analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1925–1931. DOI: 10.13722/j.cnki.jrme.2014.09.024.
    [6]
    TAYLOR R N. Geotechnical centrifuge technology [M]. London: Blackie Academic & Professional, 1995.
    [7]
    徐光明, 章为民. 离心模型中的粒径效应和边界效应研究 [J]. 岩土工程学报, 1996, 18(3): 80–86.
    [8]
    CRAIG W H. Simulation of foundations for offshore structures using centrifuge modelling [M]//BANERJEE P K, BUTTERFIELD R. Developments in Soil Mechanics and Foundation Engineering: Model Studies. London: Applied Science Publishers Ltd, 1983: 1–27.
    [9]
    OVESEN N K. The use of physical models in design: the scaling law relationship. Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering. 1979, 4: 318–323.
    [10]
    杨俊杰, 柳飞, 丰泽康男, 等. 砂土地基承载力离心模型试验中的粒径效应研究 [J]. 岩土工程学报, 2007, 29(4): 477–483. DOI: 10.3321/j.issn:1000-4548.2007.04.002.

    YANG J J, LIU F, TOYOSAWA Y, et al. Particle size effects on bearing capacity of sandy ground in centrifugal tests [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 477–483. DOI: 10.3321/j.issn:1000-4548.2007.04.002.
    [11]
    杜延龄, 韩连兵. 土工离心模型试验技术 [M]. 北京: 中国水利水电出版社, 2010.
    [12]
    谢述春, 姜春兰, 王在成, 等. 多层混凝土介质内爆炸相似性分析 [J]. 兵工学报, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.

    XIE S C, JIANG C L, WANG Z C, et al. Analysis of similarity law of explosion in multi-layer concrete medium [J]. Acta Armamentarii, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.
    [13]
    徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.

    XU X H, QIU Y Y, WANG M Y, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
    [14]
    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123-2019 [S]. 北京: 中国计划出版社, 2019: 317–320.

    Ministry of Housing and Urban-Rural Development of the Peopleʼs Republic of China. Standard for geotechnical testing method: GB/T 50123-2019 [S]. Beijing: China Planning Press, 2019: 317–320.
    [15]
    MENQ F Y. Dynamic properties of sandy and gravelly soils [D]. Austin: University of Texas at Austin, 2003.
    [16]
    HASSAN N A, NGUYEN N S, MAROT D, et al. Consequences of scalping and scalping/replacement procedures on strength properties of coarse-grained gap-graded soils [J]. Canadian Geotechnical Journal, 2022, 59(10): 1819–1832. DOI: 10.1139/cgj-2021-0504.
    [17]
    SHIN B. Effects of oversized particles on the dynamic properties of sand specimens evaluated by resonant column testing [D]. Austin: University of Texas at Austin, 2014.
    [18]
    胡哲, 朱俊高, 余挺, 等. 粗颗粒土级配混合法缩尺后力学性质变化规律研究 [J]. 能源与环保, 2017, 39(9): 37–41,46. DOI: 10.19389/j.cnki.1003-0506.2017.09.008.

    HU Z, ZHU J G, YU T, et al. Changing laws of mechanical properties of coarse grained soil after mixed scaling [J]. China Energy and Environmental Protection, 2017, 39(9): 37–41,46. DOI: 10.19389/j.cnki.1003-0506.2017.09.008.
    [19]
    US Department of the Army. TM 5-855-1 Fundamentals of protective design for conventional weapons [S]. Washington: US Department of the Army, 1986.
    [20]
    胡恒山. 拉梅常数的力学意义与剪切模量出现于纵波速度公式的原因 [J]. 地球物理学进展, 2018, 33(1): 219–222. DOI: 10.6038/pg2018BB0432.

    HU H S. Note on the Lamé constant and the reason for the presence of the shear modulus in the compressional wave speed formula [J]. Progress in Geophysics, 2018, 33(1): 219–222. DOI: 10.6038/pg2018BB0432.
    [21]
    顾晓强, 杨峻, 黄茂松, 等. 干砂弹性参数测定的弯曲-伸展元试验 [J]. 岩土力学, 2015, 36(S1): 220–224,229. DOI: 10.16285/j.rsm.2015.S1.037.

    GU X Q, YANG J, HUANG M S, et al. Measurement of elastic parameters of dry sand using bender-extender element [J]. Rock and Soil Mechanics, 2015, 36(S1): 220–224,229. DOI: 10.16285/j.rsm.2015.S1.037.
    [22]
    吴琪, 杨文保, 朱雨萌, 等. 砂-粉混合料小应变剪切模量弯曲元试验研究 [J]. 东南大学学报(自然科学版), 2018, 48(6): 1059–1067. DOI: 10.3969/j.issn.1001-0505.2018.06.011.

    WU Q, YANG W B, ZHU Y M, et al. Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6): 1059–1067. DOI: 10.3969/j.issn.1001-0505.2018.06.011.
    [23]
    梁晓敏, 顾晓强, 翟崇朴, 等. 颗粒材料各向异性弹性波速与微观组构CT试验研究 [J]. 岩土工程学报, 2024, 46(7): 1398–1407. DOI: 10.11779/CJGE20230425.

    LIANG X M, GU X Q, ZHAI C P, et al. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography [J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398–1407. DOI: 10.11779/CJGE20230425.
    [24]
    陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验 [J]. 岩土工程学报, 2006, 28(7): 874–880. DOI: 10.3321/j.issn:1000-4548.2006.07.013.

    CHEN Y M, ZHOU Y G, HUANG B. International parallel test on the measurement of shear modulus of sand using bender elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874–880. DOI: 10.3321/j.issn:1000-4548.2006.07.013.
    [25]
    吴琪, 李晓雪, 杨文保, 等. 细粒含量对饱和砂类土小应变剪切模量的影响 [J]. 哈尔滨工程大学学报, 2019, 40(7): 1297–1303. DOI: 10.11990/jheu.201805067.

    WU Q, LI X X, YANG W B, et al. Influence of the fines content on the small-strain shear modulus characteristics of saturated sandy soils [J]. Journal of Harbin Engineering University, 2019, 40(7): 1297–1303. DOI: 10.11990/jheu.201805067.
    [26]
    VIGGIANI G, ATKINSON J H. Interpretation of bender element tests [J]. Géotechnique, 1995, 45(1): 149–154. DOI: 10.1680/geot.1995.45.1.149.
    [27]
    JAMIOLKOWSKI M, LEROUEIL S, LO PRESTI D C. Design parameters from theory to practice [C]//Proceedings of the International Conference on Geotechnical Engineering for Coastal Development. Yokohama: Port & Harbour Research Institute, 1991(2): 877–917.
    [28]
    HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses [J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27–42. DOI: 10.1061/JSFEAQ.0000865.
    [29]
    WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404–1418. DOI: 10.1061/(ASCE)GT.1943-5606.0000096.
    [30]
    LIU X, YANG J, WANG G H, et al. Small-strain shear modulus of volcanic granular soil: an experimental investigation [J]. Soil Dynamics and Earthquake Engineering, 2016, 86: 15–24. DOI: 10.1016/j.soildyn.2016.04.005.
    [31]
    卢强, 丁洋, 李进, 等. 冲积土中封闭填实爆炸自由场应力波传播特性的实验研究 [J]. 现代应用物理, 2023, 14(4): 040102. DOI: 10.12061/j.issn.2095-6223.2023.040102.

    LU Q, DING Y, LI J, et al. Experimental study of free field stress wave propagation in enclosed packed soil [J]. Modern Applied Physics, 2023, 14(4): 040102. DOI: 10.12061/j.issn.2095-6223.2023.040102.
    [32]
    中华人民共和国建设部. GB/T 50145-2007 土的工程分类标准 [S]. 北京: 中国计划出版社, 2008: 6.

    Ministry of Construction of the Peopleʼs Republic of China. GB/T50145-2007 Standard for engineering classification of soil [S]. Beijing: China Planning Press, 2008: 6.
    [33]
    郭云鹏. 基于剪切波速的粗颗粒土路基填料压实密度研究 [D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001034.

    GUO Y P. Study on compaction density of subgrade filler based on shear wave velocity [D]. Changsha: Central South University, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001034.
    [34]
    CHANG C S, WANG J Y, GE L. Modeling of minimum void ratio for sand–silt mixtures [J]. Engineering Geology, 2015, 196: 293–304. DOI: 10.1016/j.enggeo.2015.07.015.
    [35]
    杭天柱, 郭冰冰, 肖兴, 等. 粗-细粒混合料最小孔隙比的经验预测模型 [J]. 土木工程学报, 2025, 58(9): 131–140. DOI: 10.15951/j.tmgcxb.24010063.

    HANG T Z, GUO B B, XIAO X, et al. Influential factors and empirical formula for predicting minimum void ratio of fine-coarse mixtures [J]. China Civil Engineering Journal, 2025, 58(9): 131–140. DOI: 10.15951/j.tmgcxb.24010063.
    [36]
    KUDO, K. Static mechanical properties of gravel ground, part 1. influence of gravel content on mechanical properties [R]. Report of Central Research Institute of Electric Power Industry, 1990.
    [37]
    TANAKA Y, KUDO K, NISHI K, et al. Small strain characteristics of soils in Hualien, Taiwan [J]. Soils and Foundations, 2000, 40(3): 111–125. DOI: 10.3208/sandf.40.3_111.
    [38]
    贝克. 爆炸危险性及其评估 [M]. 张国顺, 译. 北京: 群众出版社, 1988.

    BAKER W E. The hazards of explosion and its assessment [M]. Translated by ZHANG G S. Beijing: Public Press, 1988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (125) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return