| Citation: | ZHENG Heling, WANG Zhanxuan, WANG Mingyang, LI Xiancheng, LI Xintian, LI Zhengkun, XU Lizhi, DU Zhonghua. Formation mechanism and damage characteristics of a high-entropy alloy/al/ptfe double-layer composite liner with a truncated inner layer[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0325 |
| [1] |
ZHENG H L, WANG Z X, WANG M Y, et al. Research on jet formation and penetration enhancement of spherical-segment lightweight high-entropy alloy liners against finite-thickness reinforced concrete [J]. Structures, 2025, 80: 109814. DOI: 10.1016/j.istruc.2025.109814.
|
| [2] |
王岩鑫. PTFE/Al活性聚能射流成形机制研究[D]. 太原: 中北大学, 2023: 1–2. DOI: 10.27470/d.cnki.ghbgc.2023.001005.
WANG Y X. Research on the jet formation mechanism of PTFE/Al reactive shaped charge [D]. Taiyuan: North University of China, 2023: 1–2. DOI: 10.27470/d.cnki.ghbgc.2023.001005.
|
| [3] |
郭焕果, 卢冠成, 何所, 等. 活性复合罩聚能装药侵彻增强行为 [J]. 北京理工大学学报, 2020, 40(12): 1259–1266. DOI: 10.15918/j.tbit1001-0645.2019.247.
GUO H G, LUO G C, HE S, et al. Penetration enhancement behavior of reactive material double-layered liner shaped charge [J]. Transactions of Beijing Institute of Technology, 2020, 40(12): 1259–1266. DOI: 10.15918/j.tbit1001-0645.2019.247.
|
| [4] |
BAKER E L, DANIELS A S, NG K W, et al. Barnie: a unitary demolition warhead [C]// Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland: International Ballistics Committee, 2001: 569–574.
|
| [5] |
DANIELS A S, BAKER E L, DEFISHER S E, et al. Bam bam: large scale unitary demolition warheads [C]// Proceedings of the 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 125–130.
|
| [6] |
DANIELS A S, BAKER E L, NG K W. A unitary demolition warhead [C]//US Army. Picatinny Arsenal, Mines. Demolition and Non-lethal Weapons Conference. New Orleans, LA, 2003: 9–11.
|
| [7] |
WANG Y Z, YU Q B, ZHENG Y F, et al. Formation and penetration of jets by shaped charges with reactive material liners [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 618–622. DOI: 10.1002/prep.201500298.
|
| [8] |
张雪朋, 肖建光, 余庆波, 等. 活性药型罩聚能装药破甲后效超压特性 [J]. 兵工学报, 2016, 37(8): 1388–1394. DOI: 10. 3969/j. issn. 1000-1093. 2016. 08. 007. DOI: 10.3969/j.issn.1000-1093.2016.08.007.
ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge [J]. Acta Armamentarii, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.
|
| [9] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advance Engineering Materials, 2004, 6: 299–303. DOI: 10.1002/adem.200300567.
|
| [10] |
JIANG L H, LIU X G, GUO Z H, et al. Effect of high strain rate on adiabatic shear susceptibility and microstructures in Al0.4CoCrFeNi high-entropy alloy [J]. Journal of Materials Research and Technology, 2024, 31: 2003–2013. DOI: 10.1016/j.jmrt.2024.06.177.
|
| [11] |
李嘉伟. 药型罩用CoCrFeNiWx高熵合金的本构参数及破甲模拟研究 [D]. 太原: 太原理工大学, 2024: 5. DOI: 10.27352/d.cnki.gylgu.2024.002609.
LI J W. Constitutive parameters and armor-piercing simulation of CoCrFeNiWx high-entropy alloy for shaped charge liner [D]. Taiyuan: Taiyuan University of Science and Technology, 2024: 5. DOI: 10.27352/d.cnki.gylgu.2024.002609.
|
| [12] |
KUMAR D, SEETHARAM R, PONAPPA K. A review on microstructures, mechanical properties and processing of high entropy alloys reinforced composite materials [J]. Journal of Alloys and Compounds, 2024, 972: 172732. DOI: 10.1016/j.jallcom.2023.172732.
|
| [13] |
JING Q M, HU L, LI J, et al. Significant strength enhancement of high-entropy alloy via phase engineering and lattice distortion [J]. Journal of Alloys and Compounds, 2024, 976: 172963. DOI: 10.1016/j.jallcom.2023.172963.
|
| [14] |
LI R X, BIAN B X, WILD G, et al. Bulk and grain boundary tracer diffusion in multiphase AlCoCrFeNiTi0.2 compositionally complex alloy [J]. Acta Materialia, 2023, 261: 119352. DOI: 10.1016/j.actamat.2023.119352.
|
| [15] |
WANG L, ZHANG L T, LU X, et al. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage [J]. Chemical Engineering Journal, 2023, 465: 142766. DOI: 10.1016/j.cej.2023.142766.
|
| [16] |
刘承哲, 王海福, 张甲浩, 等. 轻质高熵合金聚能射流毁伤混凝土靶行为研究 [J]. 兵工学报, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.
LIU C Z, WANG H F, ZHANG J H, et al. Research on behavior of lightweight high-entropy alloy jet penetrating concrete targets [J]. Acta Armamentarii, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.
|
| [17] |
鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
|
| [18] |
LI R X, DING J B, ZHAO Y Y, et al. Preliminary study on the dynamic deformation mechanism of CoCrFeNi high-entropy alloy and its application in the shaped charge liner [J]. Journal of Alloys and Compounds, 2024, 999: 175083. DOI: 10.1016/j.jallcom.2024.175083.
|
| [19] |
LI R X, WANG R Q, TIAN Q W, et al. An investigation on the jet formation and penetration characteristics of the CuCoCrFeNi high-entropy alloy liner [J]. AIP Advances, 2024, 14: 055017. DOI: 10.1063/5.0207709.
|
| [20] |
WANG X T, WANG B P, LIU X D, et al. Asynchronous deformation behavior of precipitation-hardened high-entropy alloys shaped charge liner under explosive loading [J]. Intermetallics, 2025, 176: 108555. DOI: 10.1016/j.intermet.2024.108555.
|
| [21] |
LI R X, CHEN J L, WANG R Q, et al. Performance study of explosively formed projectile using CoCrFeNi high-entropy alloy as a liner [J]. Journal of Applied Physics, 2024, 136: 145901. DOI: 10.1063/5.0231905.
|
| [22] |
LIU C Z, ZHENG Y F, ZHANG J H, et al. Experimental and numerical investigation of lightweight high-entropy alloys shaped charge jet and its penetration performance [J]. International Journal of Impact Engineering, 2026, 208: 105512. DOI: 10.1016/j.ijimpeng.2025.105512.
|
| [23] |
郑宇. 双层药型罩毁伤元形成机理研究 [D]. 南京: 南京理工大学, 2008: 12.
ZHENG Y. Study on the formation mechanism of kill element from shaped charge with double layer liners [D]. Nanjing: Nanjing University of Science and Technology, 2008: 12.
|
| [24] |
辛广华, 杨宝良, 景彤, 等. 双层罩轴向组合式装药结构MEFP数值模拟 [J]. 弹箭与制导学报, 2023, 43(6): 19–28. DOI: 10.15892/j.cnki.djzdxb.2023.06.004.
XIN G H, YANG B L, JING T, et al. Numerical simulation of MEFP for axial combined charge structures with double layer liners [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(6): 19–28. DOI: 10.15892/j.cnki.djzdxb.2023.06.004.
|
| [25] |
刘猛, 马铎, 单海江, 等. 基于正交优化的双层双锥形药型罩结构设计[J/OL]. 兵器材料科学与工程, 2025. DOI: 10. 14024/j.cnki. 1004-244x. 20250519. 007.
LIU M, MA D, SHAN H J, et al. Design of a double-layer biconical liner structure based on orthogonal optimization [J]. Ordnance Material Science and Engineering, 2025. DOI: 10.14024/j.cnki.1004-244x.20250519.007.
|
| [26] |
李昊, 尹建平, 毕广剑, 等. 截顶辅助双层药型罩射流成型影响研究 [J]. 兵器装备工程学报, 2022, 43(4): 31–35. DOI: 10.11809/bqzbgcxb2022.04.006.
LI H, YIN J P, BI G J, et al. Study on influence of top-cutting assisted double-layer liner jet forming [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 31–35. DOI: 10.11809/bqzbgcxb2022.04.006.
|
| [27] |
黄炳瑜, 熊玮, 张先锋, 等. 双层含能药型罩K装药射流成型及侵彻性能试验 [J]. 含能材料, 2021, 29(2): 149–156. DOI: 10.11943/CJEM2020231.
HUANG B Y, XIONG W, ZHANG X F, et al. Experimental study on jet formation and penetration performance of double-layered reactive liners with k-charge [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 149–156. DOI: 10.11943/CJEM2020231.
|
| [28] |
ZHENG H L, WANG Z X, WANG M Y, et al. Study on mechanical response and penetration mechanism of lightweight BCC high-entropy alloy (Ti2Zr)1.5NbVAl0.5 under extreme dynamic loads [J]. Intermetallics, 2025, 186: 108966. DOI: 10.1016/j.intermet.2025.108966.
|
| [29] |
ZHENG H L, WANG Z X, LI Z K, et al. Study on deformation mechanism and energy release characteristics of refractory high-entropy alloy (Ti2Zr)1.5NbVAl0.5 under different loading conditions [J]. Journal of Alloys and Compounds, 2025, 1018: 179031. DOI: 10.1016/j.jallcom.2025.179031.
|
| [30] |
周鑫, 冯彬, 陈力, 等. 活性射流侵彻-内爆作用下半无限混凝土靶中应力波效应 [J]. 含能材料, 2025, 33(7): 689–702. DOI: 10.11943/CJEM2025079.
ZHOU X, FENG B, CHEN L, et al. Stress wave effect in semi-infinite concrete targets subjected to penetration-implosion action of reactive jet [J]. Chinese Journal of Energetic Materials, 2025, 33(7): 689–702. DOI: 10.11943/CJEM2025079.
|
| [31] |
HAO L K, GU W B, ZHANG Y D, et al. Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile (EFP) [J]. Defence Technology, 2023, 28: 280–297. DOI: 10.1016/j.dt.2022.11.003.
|
| [32] |
LI W B, WANG X M, LI W B, et al. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37: 414–424. DOI: 10.1016/j.ijimpeng.2009.08.008.
|
| [33] |
SUN S J, JIANG J W, WANG S Y, et al. Structural design of the fluted shaped charge liner using multi-section optimization method [J]. Defence Technology, 2023, 25: 249–262. DOI: 10.1016/j.dt.2023.01.008.
|