Citation: | LUO Weihong, HE Wanqing, WU Wenjun, LI Shiqiang, WANG Zhiyong. Deformation behavior of curved structures with negative Poisson’s ratio under diverse loading velocities[J]. Explosion And Shock Waves, 2023, 43(11): 113102. doi: 10.11883/bzycj/2022-0520 |
[1] |
YAO Y Z, SHEN Y X, ZHU L Q, et al. Preliminary study and bioinformatics analysis on the potential role of CagQ in type IV secretion system of H. pylori [J]. Microbial Pathogenesis, 2018, 116: 1–7. DOI: 10.1016/j.micpath.2017.12.076.
|
[2] |
KUMAR P, KUCHEROV L, RYVKIN M. Fracture toughness of self-similar hierarchical material [J]. International Journal of Solids and Structures, 2020, 203: 210–223. DOI: 10.1016/j.ijsolstr.2020.07.011.
|
[3] |
WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. DOI: 10.1016/j.compositesb.2019.02.011.
|
[4] |
SPADONI A, RUZZENE M, SCARPA F. Dynamic response of chiral truss-core assemblies [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(11): 941–952. DOI: 10.1177/1045389x06060219.
|
[5] |
QI C, JIANG F, YANG S, et al. Dynamic crushing response of novel re-entrant circular auxetic honeycombs: numerical simulation and theoretical analysis [J]. Aerospace Science and Technology, 2022, 124: 107548. DOI: 10.1016/j.ast.2022.107548.
|
[6] |
LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. DOI: 10.1016/j.ijimpeng.2018.10.004.
|
[7] |
ALMGREN R F. An isotropic three-dimensional structure with Poisson’s ratio=−1 [J]. Journal of Elasticity, 1985, 15(4): 427–430. DOI: 10.1007/BF00042531.
|
[8] |
WILT J K, YANG C, GU G X. Accelerating auxetic metamaterial design with deep learning [J]. Advanced Engineering Materials, 2020, 22(5): 1901266. DOI: 10.1002/adem.201901266.
|
[9] |
韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究 [J]. 振动与冲击, 2017, 36(23): 223–231. DOI: 10.13465/j.cnki.jvs.2017.23.033.
HAN H L, ZHANG X C. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures [J]. Journal of Vibration and Shock, 2017, 36(23): 223–231. DOI: 10.13465/j.cnki.jvs.2017.23.033.
|
[10] |
XIAO D B, DONG Z C, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering: A, 2019, 758: 163–171. DOI: 10.1016/j.msea.2019.04.116.
|
[11] |
ZHANG J J, LU G X. Dynamic tensile behaviour of re-entrant honeycombs [J]. International Journal of Impact Engineering, 2020, 139: 103497. DOI: 10.1016/j.ijimpeng.2019.103497.
|
[12] |
HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin-Walled Structures, 2018, 131: 373–384. DOI: 10.1016/j.tws.2018.04.020.
|
[13] |
JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
|
[14] |
FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications [J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI: 10.1088/2631-7990/ac5be6.
|
[15] |
DONG Z C, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb [J]. Materials & Design, 2019, 182: 108036. DOI: 10.1016/j.matdes.2019.108036.
|
[16] |
韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.
HAN H L, ZHANG X C, WANG P. Dynamic responses and energy absorption properties of honeycombs with negative Poisson’s ratio [J]. Explosion and Shock Waves, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.
|
[17] |
GUO Y G, ZHANG J, CHEN L M, et al. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load [J]. Aerospace Science and Technology, 2020, 98: 105662. DOI: 10.1016/j.ast.2019.105662.
|
[18] |
XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson’s ratio effect of metallic auxetic reentrant honeycomb under dynamic compression [J]. Materials Science and Engineering: A, 2019, 763: 138151. DOI: 10.1016/j.msea.2019.138151.
|
[19] |
LIU W Y, WANG N L, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91. DOI: 10.1016/j.matdes.2016.03.086.
|
[20] |
KOOISTRA G W, DESHPANDE V S, WADLEY H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium [J]. Acta Materialia, 2004, 52(14): 4229–4237. DOI: 10.1016/j.actamat.2004.05.039.
|
[21] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 1-13. DOI: 10.1017/CBO9781139878326.
|
[22] |
QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅱ: dynamic crushing based on finite element simulation [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231–1241. DOI: 10.1016/j.ijimpeng.2009.05.010.
|
[23] |
SUN D Q, ZHANG W H, ZHAO Y C, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs [J]. Composite Structures, 2013, 96: 726–735. DOI: 10.1016/j.compstruct.2012.10.008.
|