YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06
Citation:
YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06
YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06
Citation:
YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06
By solving two-dimensional axisymmetric Navier-Stokes equations in conjunction with the chemistry, a numerical simulation of pulse detonation process induced by flame in the tube with CH4-O2-N2 mixture and the flow field outside was performed, and a detailed chemical mechanism of CH4-O2-N2 system, which included 14 species and 19 element reactions, was involved. The computational results demonstrate the process of the development, steady propagation, degenerating into a shock after the detonation wave went into the flow field outside and complex vortex /shock interactions in the vicinity of the thruster exit. The pressure distribution of axis and the head-end (thrust wall) thrust history were discussed to research and exploit a pulse detonation engine .