RONG Zhi-dan, SUN Wei. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J]. Explosion And Shock Waves, 2009, 29(4): 361-366. doi: 10.11883/1001-1455(2009)04-0361-06
Citation:
RONG Zhi-dan, SUN Wei. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J]. Explosion And Shock Waves, 2009, 29(4): 361-366. doi: 10.11883/1001-1455(2009)04-0361-06
RONG Zhi-dan, SUN Wei. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J]. Explosion And Shock Waves, 2009, 29(4): 361-366. doi: 10.11883/1001-1455(2009)04-0361-06
Citation:
RONG Zhi-dan, SUN Wei. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J]. Explosion And Shock Waves, 2009, 29(4): 361-366. doi: 10.11883/1001-1455(2009)04-0361-06
Ultrahigh-performance cementitious composites (UHPCC) with 200 MPa compressive strength were prepared by substitution of ultrafine industrial waste powder for large quantity of cement by weight and replacement of ground fine quartz sand with natural fine sand whose maximum particle diameter was 2.5 mm. And in the prepared composites, basalt stones with high elastic modules and high strength were added, whose maximum particle diameter was 10 mm. High-speed impact compressive experiments were performed on the ultrahigh-performance steel-fiber-reinforced cementitious composites (UHPSFRCC) with different fiber volume fractions by the split Hopkinson pressure bar technique. Strain rate, fiber volume fraction and coarse aggregate can influence the impact resistance of the UHPSFRCC. The impact resistance of the UHPSFRCC is improved with the increase of fiber volume fraction and the dynamic strength of the UHPSFRCC is advanced with the increase of strain rate. The dynamic performances of the UHPSFRCC are improved with the adding of coarse aggregates of basalt stones.