Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, Jiang Yao-gang. Acoustic characteristics of underwater continuous pulse shock wave[J]. Explosion And Shock Waves, 2013, 33(5): 501-506. doi: 10.11883/1001-1455(2013)05-0501-06
Citation:
Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, Jiang Yao-gang. Acoustic characteristics of underwater continuous pulse shock wave[J]. Explosion And Shock Waves , 2013, 33(5): 501-506. doi: 10.11883/1001-1455(2013)05-0501-06
Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, Jiang Yao-gang. Acoustic characteristics of underwater continuous pulse shock wave[J]. Explosion And Shock Waves, 2013, 33(5): 501-506. doi: 10.11883/1001-1455(2013)05-0501-06
Citation:
Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, Jiang Yao-gang. Acoustic characteristics of underwater continuous pulse shock wave[J]. Explosion And Shock Waves , 2013, 33(5): 501-506. doi: 10.11883/1001-1455(2013)05-0501-06
Acoustic characteristics of underwater continuous pulse shock wave
Abstract
With a view to obtaining the application prospect of metal-sheathed detonating cords in the research of underwater sound sources, an experimental apparatus called underwater continuous pulse wave generator, which can orderly generate a series of shock waves, is designed. On the basis of wavelet analysis, the signal decomposition and reconstruction is implemented to investigate the frequency spectrum characteristics of the signals. Likewise, the sound pressure level of the underwater continuous pulse shock wave is analyzed. Results indicate that the acoustic signal generated by this device has strong acoustic power and high sound pressure level. The frequency contained in the signal is abundant, and the shock waves generated by the detonator and the detonating cord show different frequency spectrum characteristics by the reason of different charge structures and explosion propagation styles. The shock wave generated by the detonator is mainly concentrated in the frequency band of less than 15.6 kHz, and the signal produced by the detonating cord is mainly distributed in the frequency band which is below 62.5 kHz. The pulse shock wave count and acoustic duration of the signal can be controlled by the permutation style and the length of the detonating cord, and the time interval between two adjacent pulse waves is adjustable. The generator is stable and controllable.
References
Relative Articles
[1] LIU Xiaobo, LI Shuai, ZHANG Aman. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion [J]. Explosion And Shock Waves, 2022, 42(1): 014202. doi: 10.11883/bzycj-2021-0106
[2] HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave [J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
[3] WANG Ying, XIAO Wei, YAO Xiongliang, QIN Yezhi. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors [J]. Explosion And Shock Waves, 2019, 39(7): 073103. doi: 10.11883/bzycj-2018-0141
[4] LIU Yijia, LU Wenbo, CHEN Ming, YAN Peng. Frequency and duration dependence analysis of structural blasting vibration response [J]. Explosion And Shock Waves, 2019, 39(8): 085203. doi: 10.11883/bzycj-2019-0142
[5] GUO Rui, LIU Lei. Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector [J]. Explosion And Shock Waves, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
[6] LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air [J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209
[7] LIU Bo, YANG Liming, LI Dongjie, OUYANG Ke. Analysis of axial vibration frequency for projectile structure in penetration [J]. Explosion And Shock Waves, 2018, 38(3): 677-682. doi: 10.11883/bzycj-2016-0282
[8] Xie Yaoguo, Yao Xiongliang, Cui Hongbin, Li Xinfei. Wavelet analysis on shock response of a real ship subjected to non-contact underwater explosion [J]. Explosion And Shock Waves, 2017, 37(1): 99-106. doi: 10.11883/1001-1455(2017)01-0099-08
[9] Lu Qiang, Wang Zhanjiang, Ding Yang, Liu Xiaoxin, Guo Zhiyun, Wu Yujiao. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves [J]. Explosion And Shock Waves, 2017, 37(6): 1023-1030. doi: 10.11883/1001-1455(2017)06-1023-08
[10] Pei Shan-bao, Liu Rong-zhong, Guo Rui. Analysis of characteristics of sequential underwater explosion sound signal based on wavelet transform [J]. Explosion And Shock Waves, 2015, 35(4): 520-526. doi: 10.11883/1001-1455(2015)04-0520-07
[11] Ren Peng, Zhang Wei, Huang Wei, Ye Nan, Cai Xuan-ming. Research on non-explosive underwater shock loading device [J]. Explosion And Shock Waves, 2014, 34(3): 334-339. doi: 10.11883/1001-1455(2014)03-0334-06
[12] XIANG Da-lin, RONG Ji-li, LIJian, YANG Rong-jie. Shockwavefeaturesofunderwaterexplosionofexplosiveswithmetalshell [J]. Explosion And Shock Waves, 2012, 32(1): 67-72. doi: 10.11883/1001-1455(2012)01-0067-06
[13] CHENG Lei, HAN Yan, WANG Jian, DU Juan. Time-frequencyrepresentationanalysisinunderwaterexplosiveshockwave
signalsbasedonanimprovedHHTmethod [J]. Explosion And Shock Waves, 2011, 31(3): 326-331. doi: 10.11883/1001-1455(2011)03-0326-06
[14] JIA Hu, SHEN Zhao-wu. Underwatersoundcharacteristicsofmetal-claddetonatingcords [J]. Explosion And Shock Waves, 2011, 31(4): 428-432. doi: 10.11883/1001-1455(2011)04-0428-05
[15] SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves [J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06
Cited by Periodical cited type(3) 1. 周稹先,洪峰,许伟杰,张涛,陈峰. 基于深度学习的水下爆炸关键信号识别方法. 水下无人系统学报. 2024(04): 739-748 . 2. 郭锐,俞旸晖. 水下爆炸声学效应研究现状与展望. 水下无人系统学报. 2022(03): 266-282 . 3. 宋巍,谢东升,黄铁铮,孙滔,李海涛,范志强. 线性装药爆破去除输电线覆冰研究. 高压物理学报. 2019(04): 207-213 .
Other cited types(6)
Proportional views