Volume 34 Issue 1
Mar.  2014
Turn off MathJax
Article Contents
Guo Zhao-liang, Ren Guo-wu, Tang Tie-gang, Liu Cang-li. Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw[J]. Explosion And Shock Waves, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07
Citation: Guo Zhao-liang, Ren Guo-wu, Tang Tie-gang, Liu Cang-li. Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw[J]. Explosion And Shock Waves, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07

Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw

doi: 10.11883/1001-1455(2014)01-0052-07
Funds:  Supported by the National Natural Science Foundation of China (11172279)
  • Received Date: 2012-07-12
  • Rev Recd Date: 2012-09-05
  • Publish Date: 2014-01-25
  • The finite element program LS-DYNA3D and the molecular dynamic method were applied to investigate the plastic zone formation, evolution process and the consequent dynamic failure behaviors under the dynamic tensile loading in a metal sheet with a preset flaw at macroscopic and microscopic levels, respectively.The calculated results show that the formation of the plastic zone stems from the stress wave-flaw and stress wave-stress wave interactions.The macroscopic and microscopic simulations represent the similar physical characteristics:the crack initiates at the front of the flaw boundary, then connects with the flaw and eventually leads to the global failure.
  • loading
  • [1]
    Fields R J, de Wit R. Plastic zone formation around an arresting crack[C]//Knauss W G, Rosakis A J. Non-linear fracture: Recent advances. Springer, 1990: 231-238.
    [2]
    Khan S M A, Khraisheh M K. A new criterion for mixed mode fracture initiation based on the crack tip plastic core region[J]. International Journal of Plasticity, 2004, 20(1): 55-84. doi: 10.1016/S0749-6419(03)00011-1
    [3]
    Bian Li-chun, Kim K S. The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed model loading[J]. International Journal of Fatigue, 2004, 26(11): 1169-1178. doi: 10.1016/j.ijfatigue.2004.04.006
    [4]
    Gao Xin, Wang Han-gong, Kang Xing-wu, et al. Analysis solutions to crack tip plastic zone under various loading conditions[J]. European Journal of Mechanics A: Solids, 2010, 29(4): 738-745. doi: 10.1016/j.euromechsol.2010.03.003
    [5]
    Janssen M, Zuidema J, Wanhill R J H. Fracture Mechanics[M]. Spon Press, 2004.
    [6]
    张亚, 强洪夫, 杨月诚.复合型裂纹小范围屈服下裂尖塑性区统一解[J].机械工程学报, 2007, 43(2): 50-54. doi: 10.3321/j.issn:0577-6686.2007.02.007

    Zhang Ya, Qiang Hong-fu, Yang Yue-cheng. Unified solutions to mixed mode crack tip under small scale yielding[J]. Chinese Journal of Mechanical Engineering, 2007, 43(2): 50-54. doi: 10.3321/j.issn:0577-6686.2007.02.007
    [7]
    Huang Yi, Chen Jing-jie, Liu Gang. A new method of plastic zone size determined based on maximum crack opening displacement[J]. Engineering Fracture Mechanics, 2010, 77(14): 2912-2918. doi: 10.1016/j.engfracmech.2010.06.026
    [8]
    Shi S Q, Puls M P. A simple method of estimating the maximum normal stress and plastic zone size at a shallow notch[J]. International Journal of Pressure Vessels and Piping, 1995, 64(1): 67-71. doi: 10.1016/0308-0161(94)00070-Y
    [9]
    张培源, 张晓敏, 严波, 等.裂尖曲率对裂纹前缘塑性区的影响[J].应用力学学报, 2004, 21(4): 93-96. doi: 10.3969/j.issn.1000-4939.2004.04.020

    Zhang Pei-yuan, Zhang Xiao-min, Yan Bo, et al. Plastic zone affected by crack tip curvature[J]. Chinese Journal of Applied Mechanics, 2004, 21(4): 93-96. doi: 10.3969/j.issn.1000-4939.2004.04.020
    [10]
    布洛克D.工程断裂力学[M].王克仁, 译.北京: 科学出版社, 1980.
    [11]
    钱才富, 姜忠军, 陈平, 等, 裂纹尖端塑性区和无位错区的微观模拟[J].金属学报, 2004, 40(2): 159-162.

    Qian Cai-fu, Jiang Zhong-jun, Chen Ping, et al. Micro-simulation of crack tip plastic zone and dislocation-free zone[J]. Acta Metallurgica Sinica, 2004, 40(2): 159-162.
    [12]
    钱才富, 李慧芳, 崔文勇. Ⅰ型裂纹尖端塑性区和无位错区及其对裂纹扩展的影响[J].材料研究学报, 2007, 21(6): 599-603. doi: 10.3321/j.issn:1005-3093.2007.06.008

    Qian Cai-fu, Li Hui-fang, Cui Wen-yong. ModeⅠcrack tip plastic zone, dislocation-free zone and their effects on crack propagation[J]. Chinese Journal of Materials Research, 2007, 21(6): 599-603. doi: 10.3321/j.issn:1005-3093.2007.06.008
    [13]
    Rudd R E, Belak J F. Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation[J]. Computational Materials Science, 2002, 24(1/2): 148-153.
    [14]
    Rudd R E. Void growth in BCC metals simulated with molecular dynamics using the Finnis-Sinclair potential[J]. Philosophical Magazine, 2009, 89(34/35/36): 3133-3161.
    [15]
    SeppäläE T, Belak J, Rudd R E. Onset of void coalescence during dynamic fracture of ductile metals[J]. Physical Review Letters, 2004, 93(24): 245503. doi: 10.1103/PhysRevLett.93.245503
    [16]
    祁美兰, 贺宏亮, 王永刚, 等.动态冲击下纯铝中微损伤演化的仿真研究[J].振动与冲击, 2007, 26(8): 133-135. doi: 10.3969/j.issn.1000-3835.2007.08.033

    Qi Mei-lan, He Hong-liang, Wang Yong-gang, et al. Simulation of micro void evolution in the pure aluminum under dynamic loading[J]. Journal of Vibration and Shock, 2007, 26(8): 133-135. doi: 10.3969/j.issn.1000-3835.2007.08.033
    [17]
    王永刚, 刘宏伟.强冲击载荷下含杂质的纯铝中微孔洞长大的动力学行为[J].高压物理学报, 2010, 24(4): 248-254.

    Wang Yong-Gang, Liu Hong-wei. Dynamic behavior of void growth in aluminum with a preexisting flaw under intense impact loading[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 248-254.
    [18]
    工程材料实用手册委员会.工程材料实用手册: 结构钢、不锈钢[M].北京: 中国标准出版社, 1988.
    [19]
    LS-DYNA Keyword user's manual-2003[M]. California: Livermore, 2003.
    [20]
    郭昭亮, 刘仓理, 汤铁钢.预置圆孔膨胀环动态断裂行为研究[J].实验力学, 2010, 25(5): 546-552.

    Guo Zhao-liang, Liu Cang-li, Tang Tie-gang. On the expanding ring dynamic fracture behavior with a preset circular hole[J]. Journal of Experimental Mechanics, 2010, 25(5): 546-552.
    [21]
    Wagner N J, Holian B L, Voter A F. Molecular-dynamics simulations of two-dimensional materials at high strain rates[J]. Physical Review A, 1992, 45(12): 8457-8470. doi: 10.1103/PhysRevA.45.8457
    [22]
    潘永亮, 汪琥庭, 汪芳庭, 等.复变函数[M].北京: 科学出版社, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3497) PDF downloads(520) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return