Volume 34 Issue 3
Aug.  2014
Turn off MathJax
Article Contents
Zhang Jian, Zhao Gui-ping, Lu Tian-jian. High speed compression behaviour of metallic cellular materials under impact loading[J]. Explosion And Shock Waves, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07
Citation: Zhang Jian, Zhao Gui-ping, Lu Tian-jian. High speed compression behaviour of metallic cellular materials under impact loading[J]. Explosion And Shock Waves, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07

High speed compression behaviour of metallic cellular materials under impact loading

doi: 10.11883/1001-1455(2014)03-0278-07
Funds:  Supported by the National Natural Science Foundation of China (11021202);the National Basic Research Program of China (973 Program) (2011CB610305)
More Information
  • Corresponding author: Zhao Gui-ping, zhaogp@mail.xjtu.edu.cn
  • Received Date: 2012-11-13
  • Rev Recd Date: 2013-04-25
  • Publish Date: 2014-05-25
  • A two-dimensional finite element model was created from a tomographic image of the aluminum foams, which represents the cell shape and geometric distribution of real foams.To determine the mechanical properties of cell wall material, the uniaxial stress versus strain curve, predicted numerically for aluminum foam, was fitted to that measured experimentally.We mainly discuss the shock wave propagation, the inertial effect and the strength of the stress on the stationary end of metallic cellular materials under high speed compression.As for aluminum foams with relative density 0.3, the elastic wave speed is calculated to be 5 km/s, whilst the plastic wave speed increases from 83 to 294 m/s, with the compression velocity increasing from 50 to 200 m/s.Within the compression velocity range of 50-100 m/s, the deformation modes change from random mode to progressive mode.However, no distinct critical velocity are observed.The dynamic locking strain increases with the increasing compression velocity.Second compression process occurs in metallic cellular materials when the plastic wave reflects on the stationary end.Accordingly, the second stress plateau appears on the stationary end, which increases with the increasing compression velocity due to inertia effect.
  • loading
  • [1]
    Lopatnikov S L, Gama B A, Haque M J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61(1/2): 61-71.
    [2]
    Tan P, Harrigan J, Reid S. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology, 2002, 8: 480-488.
    [3]
    Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams. Part I-Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007
    [4]
    Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅠ-Experiments[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652-2671. doi: 10.1016/j.jmps.2007.04.005
    [5]
    Merrett R P, Langdon G S, Theobald M D. The blast and impact loading of aluminium foam[J]. Materials & Design, 2013, 44: 311-319.
    [6]
    Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅡ-Analysis[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2672-2686. doi: 10.1016/j.jmps.2007.04.004
    [7]
    Karagiozova D, Langdon G S, Nurick G N. Propagation of compaction waves in metal foams exhibiting strain hardening[J]. International Journal of Solids and Structures, 2012, 49(19/20): 2763-2777.
    [8]
    Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46: 3988-3998. doi: 10.1016/j.ijsolstr.2009.07.024
    [9]
    Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36: 775-782.
    [10]
    Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570.
    [11]
    Lopatnikov S L, Gama B A, Gillespie J W. Modeling the progressive collapse behavior of metal foams[J]. International Journal of Impact Engineering, 2007, 34(3): 587-595. doi: 10.1016/j.ijimpeng.2005.12.004
    [12]
    Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of Impact Engineering, 2004, 30(4): 421-445. doi: 10.1016/S0734-743X(03)00066-6
    [13]
    Harrigan J J, Reid S R, Tan P J, et al. High rate crushing of wood along the grain[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521-544.
    [14]
    张健, 赵桂平, 卢天健.闭孔泡沫铝应变率效应的试验和有限元分析[J].西安交通大学学报, 2010, 44(5): 97-101.

    Zhang Jian, Zhao Gui-ping, Lu Tian-jian. Experimental and numerical study on strain rate effects of close-celled aluminum foams[J]. Journal of Xi'an Jiaotong University, 2010, 44(5): 97-101.
    [15]
    Hallquist J O. LSTC LS-DYNA user's manual[Z]. Livermore, CA, US: Livermore Software Technology Corporation, 2007.
    [16]
    Wang Li-li. Foundation of stress waves[M]. Beijing: National Defense Industry Press, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (2924) PDF downloads(576) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return