Volume 34 Issue 3
Aug.  2014
Turn off MathJax
Article Contents
Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08
Citation: Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08

A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation

doi: 10.11883/1001-1455(2014)03-0292-08
Funds:  Supported by the National Natural Science Foundation of China (11302230); the National Basic Research Program of China (973 Program) (2010CB731506)
  • Received Date: 2012-10-25
  • Publish Date: 2014-05-25
  • To solve the no convergence problem due to grid distortion when simulating hypervelocity impact problems using continuum-based discrete element method (CDEM), a 2D particle contact-based meshfree method (PCMM) is presented.In PCMM, triangle elements are created based on complex and abundant contact information between particles.According to the evolution and renewal of contact pairs, old elements (satisfying the deletion condition) will be deleted and new elements (satisfying the creation condition) will be created.By introducing fluid-elastic-plastic model for elements, the hypervelocity impact problems could be simulated well.Three conditions to create triangle element are given: the three particles which the element consisted of should contact with each other; each internal angle of the triangle element should locate between 30 and 150 degree; each edge length of the element should be larger than 0.5 times of average radius.The results of numerical cases (elastic bar impacting rigid wall, Taylor bar, debris clouds, and bullet penetration) show the accuracy and rationality of PCMM.
  • loading
  • [1]
    Li S H, Zhao M H, Wang Y N, et al. A continuum-based discrete element method for continuous deformation and failure process[C]//WCCM VI in Conjunction with APCOM'04. Beijing, 2004: 77.
    [2]
    Wang Y N, Zhao M H, Li S H, et al. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method[J]. Science in China Series E-Engineering & Materials Science, 2005, 48(suppl): 95-106. http://www.cqvip.com/QK/60110X/2005z1/1001150600.html
    [3]
    Littlefield D L. The use of r-adaptivity with local, intermittent remesh for modeling hypervelocity impact and penetration[J]. International Journal of Impact Engineering, 2001, 26(1): 433-442. http://www.sciencedirect.com/science/article/pii/S0734743X01000938
    [4]
    Oñate E, Idelsohn S R, Del Pin F, et al. The particle finite element method-an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307. doi: 10.1142/S0219876204000204
    [5]
    张雄, 刘岩, 马上.无网格法的理论及应用[J].力学进展, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001

    Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications[J]. Advances in Mechanics, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001
    [6]
    Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
    [7]
    Gingold R A, Monaghan J J. Smoothed particle hydrodynamics-theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389. doi: 10.1093/mnras/181.3.375
    [8]
    Antuono M, Colagrossi A, Marrone S, et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532-549. doi: 10.1016/j.cpc.2009.11.002
    [9]
    肖毅华, 胡德安, 韩旭, 等.一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用[J].爆炸与冲击, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007

    Xiao Yi-hua, Hu De-an, Han Xu, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation[J]. Explosion and Shock Waves, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
    [10]
    Ma G W, Wang X J, Ren F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353-363. doi: 10.1016/j.ijrmms.2011.02.001
    [11]
    Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 231-252. doi: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K
    [12]
    Sigalotti L D G, López H. Adaptive kernel estimation and SPH tensile instability[J]. Computers & Mathematics with Applications, 2008, 55(1): 23-50. http://www.sciencedirect.com/science/article/pii/S0898122107003288
    [13]
    Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering, 2009, 36(2): 272-282. doi: 10.1016/j.ijimpeng.2008.07.001
    [14]
    Zhang X, Sze K Y, Ma S. An explicit material point finite element method for hyper-velocity impact[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 689-706. doi: 10.1002/nme.1579
    [15]
    Ambati R, Pan X F, Yuan H, et al. Application of material point methods for cutting process simulations[J]. Computational Materials Science, 2012, 57: 102-110. doi: 10.1016/j.commatsci.2011.06.018
    [16]
    吕剑, 何颖波, 田常津, 等.泰勒杆实验对材料动态本构参数的确认和优化确定[J].爆炸与冲击, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009

    Lü Jian, He Ying-bo, Tian Chang-jing, et al. Validation and optimization of dynamic constitutive model constants with Taylor test[J]. Explosion and Shock Waves, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009
    [17]
    Beissel S R, Gerlach C A, Johnson G R. A quantitative analysis of computed hypervelocity debris clouds[J]. International Journal of Impact Engineering, 2008, 35(12): 1410-1418. doi: 10.1016/j.ijimpeng.2008.07.059
    [18]
    Huang J, Ma Z, Ren L S, et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering, 2013, 56: 32-39. doi: 10.1016/j.ijimpeng.2012.07.003
    [19]
    Chi R Q, Pang B J, Guan G S, et al. Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets[J]. International Journal of Impact Engineering, 2008, 35(12): 1465-1472. doi: 10.1016/j.ijimpeng.2008.07.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (2816) PDF downloads(363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return