Citation: | Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08 |
[1] |
Li S H, Zhao M H, Wang Y N, et al. A continuum-based discrete element method for continuous deformation and failure process[C]//WCCM VI in Conjunction with APCOM'04. Beijing, 2004: 77.
|
[2] |
Wang Y N, Zhao M H, Li S H, et al. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method[J]. Science in China Series E-Engineering & Materials Science, 2005, 48(suppl): 95-106. http://www.cqvip.com/QK/60110X/2005z1/1001150600.html
|
[3] |
Littlefield D L. The use of r-adaptivity with local, intermittent remesh for modeling hypervelocity impact and penetration[J]. International Journal of Impact Engineering, 2001, 26(1): 433-442. http://www.sciencedirect.com/science/article/pii/S0734743X01000938
|
[4] |
Oñate E, Idelsohn S R, Del Pin F, et al. The particle finite element method-an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307. doi: 10.1142/S0219876204000204
|
[5] |
张雄, 刘岩, 马上.无网格法的理论及应用[J].力学进展, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001
Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications[J]. Advances in Mechanics, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001
|
[6] |
Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
|
[7] |
Gingold R A, Monaghan J J. Smoothed particle hydrodynamics-theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389. doi: 10.1093/mnras/181.3.375
|
[8] |
Antuono M, Colagrossi A, Marrone S, et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532-549. doi: 10.1016/j.cpc.2009.11.002
|
[9] |
肖毅华, 胡德安, 韩旭, 等.一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用[J].爆炸与冲击, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
Xiao Yi-hua, Hu De-an, Han Xu, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation[J]. Explosion and Shock Waves, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
|
[10] |
Ma G W, Wang X J, Ren F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353-363. doi: 10.1016/j.ijrmms.2011.02.001
|
[11] |
Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 231-252. doi: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K
|
[12] |
Sigalotti L D G, López H. Adaptive kernel estimation and SPH tensile instability[J]. Computers & Mathematics with Applications, 2008, 55(1): 23-50. http://www.sciencedirect.com/science/article/pii/S0898122107003288
|
[13] |
Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering, 2009, 36(2): 272-282. doi: 10.1016/j.ijimpeng.2008.07.001
|
[14] |
Zhang X, Sze K Y, Ma S. An explicit material point finite element method for hyper-velocity impact[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 689-706. doi: 10.1002/nme.1579
|
[15] |
Ambati R, Pan X F, Yuan H, et al. Application of material point methods for cutting process simulations[J]. Computational Materials Science, 2012, 57: 102-110. doi: 10.1016/j.commatsci.2011.06.018
|
[16] |
吕剑, 何颖波, 田常津, 等.泰勒杆实验对材料动态本构参数的确认和优化确定[J].爆炸与冲击, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009
Lü Jian, He Ying-bo, Tian Chang-jing, et al. Validation and optimization of dynamic constitutive model constants with Taylor test[J]. Explosion and Shock Waves, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009
|
[17] |
Beissel S R, Gerlach C A, Johnson G R. A quantitative analysis of computed hypervelocity debris clouds[J]. International Journal of Impact Engineering, 2008, 35(12): 1410-1418. doi: 10.1016/j.ijimpeng.2008.07.059
|
[18] |
Huang J, Ma Z, Ren L S, et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering, 2013, 56: 32-39. doi: 10.1016/j.ijimpeng.2012.07.003
|
[19] |
Chi R Q, Pang B J, Guan G S, et al. Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets[J]. International Journal of Impact Engineering, 2008, 35(12): 1465-1472. doi: 10.1016/j.ijimpeng.2008.07.009
|