Li Hai-tao, Luo Wei, Jiang Yu-sheng, Zhang Jun-song. Initiation and extension of gas-driven fracture during compound perforation[J]. Explosion And Shock Waves, 2014, 34(3): 307-314. doi: 10.11883/1001-1455(2014)03-0307-08
Citation: Li Hai-tao, Luo Wei, Jiang Yu-sheng, Zhang Jun-song. Initiation and extension of gas-driven fracture during compound perforation[J]. Explosion And Shock Waves, 2014, 34(3): 307-314. doi: 10.11883/1001-1455(2014)03-0307-08

Initiation and extension of gas-driven fracture during compound perforation

doi: 10.11883/1001-1455(2014)03-0307-08
  • Received Date: 2012-11-13
  • Publish Date: 2014-05-25
  • Combined with the crack tip stress intensity factor criterion of linear elastic fracture mechanics, the model of initiation and extension of gas-driven fractures by compound perforation is established.A function with multiple variables describing gas pressure distribution in crack is proposed herein to realize the numerical resolution of the model using the iteration method, and the dynamic change law of gas pressure distribution in fracture with time is obtained.In addition, the effect of different characteristic parameters on the process of fracture initiation and extension as well as fracture arrest is analyzed.The example calculation shows: (1)with the progress of fracture extension, the leading edge of the flow and the fracture tip will experience the process from coincidence to noncoincidence and then to coincidence; (2)the fracture initiation and extension are more difficult as in-situ stress is greater, which makes the effective time of gas-driven and the fracture shorter; (3)the fracture initiation and extension are easier and the utilization of gas energy is higher as the initial crack is longer, resulting in the longer crack; (4)the change of fracture toughness has no obvious influence on the crack initiation and extension as well as the fracture arrest; (5)both the effective time of gas-driven and the fracture are longer as the rate of pressure rise is smaller, but its change has nearly no impact on the pressure of the fracture initiation and arrest.
  • [1]
    李克明, 张曦.高能复合射孔技术及应用[J].石油勘探与开发, 2002, 29(5): 91-92. doi: 10.3321/j.issn:1000-0747.2002.05.030

    Li Ke-ming, Zhang Xi. High energy combined perforation technique and its application[J]. Petroleum Exploration and Development, 2002, 29(5): 91-92. doi: 10.3321/j.issn:1000-0747.2002.05.030
    [2]
    孙新波, 刘辉, 王宝兴, 等.复合射孔技术综述[J].爆破器材, 2007, 36(5): 29-31. doi: 10.3969/j.issn.1001-8352.2007.05.010

    Sun Xin-bo, Liu Hui, Wang Bao-xin, et al. Review of propellant perforation techniques[J]. Explosive Materials, 2007, 36(5): 29-31. doi: 10.3969/j.issn.1001-8352.2007.05.010
    [3]
    范天佑.断裂理论基础[M].北京: 科学出版社, 2003.
    [4]
    曹言光, 刘长松, 林平, 等.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型[J].西安石油学院学报:自然科学版, 2003, 18(4): 36-39. doi: 10.3969/j.issn.1673-064X.2003.04.010

    Cao Yan-guang, Liu Chang-song, Lin Ping, et al. Establishing the models for calculating the fracturing pressure of formation rock during oil/gas wells fracturing by using fracture mechanics theory[J]. Journal of Xi'an Petroleum Institute: Natural Science Edition, 2003, 18(4): 36-39. doi: 10.3969/j.issn.1673-064X.2003.04.010
    [5]
    Nilson R H. Gas-driven fracture propagation[J]. Journal of Applied Mechanics, 1981, 48(4): 757-762. doi: 10.1115/1.3157729
    [6]
    Nilson R H, Griffiths S K. Numerical analysis of hydraulically-driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 1983, 36(3): 359-370. doi: 10.1016/0045-7825(83)90129-9
    [7]
    Nilson R H, Proffer W J, Duff R E. Modeling of gas-driven fractures induced by propellant combustion within a borehole[J]. International Journal of Rock Mechanics and Mining Sciences, 1985, 22(1): 3-19.
    [8]
    Nilson R H. An integral method for predicting hydraulic fracture propagation driven by gasses or liquids[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(2): 191-211. doi: 10.1002/nag.1610100207
    [9]
    Petitjean L, Couet B. Modeling of gas-driven fracture propagation for oil and gas stimulation[C]//SPE28084, Rock Mechanics in Petroleum Engineering. Delft, Netherlands, 1994.
    [10]
    Yang D W, Risnes R. Numerical modelling and parametric analysis for designing propellant gas fracturing[C]//SPE71641, SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 2001.
    [11]
    王家来, 刘积铭.岩石爆破破岩机理的损伤力学分析[J].岩石力学与工程学报, 1996, 15(增刊): 515-518.

    Wang Jia-lai, Liu Ji-ming. Damage analysis on rock blasting mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(suppl): 515-518.
    [12]
    杨小林, 王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击, 2001, 21(2): 111-116. doi: 10.3321/j.issn:1001-1455.2001.02.005

    Yang Xiao-lin, Wang Meng-shu. Mechanism of rock crack growth under detonation gas loading[J]. Explosion and Shock Waves, 2001, 21(2): 111-116. doi: 10.3321/j.issn:1001-1455.2001.02.005
    [13]
    陈莉静, 李宁, 王俊奇.高能复合射孔爆生气体作用下预存裂缝起裂扩展研究[J].石油勘探与开发, 2005, 32(6): 91-94. doi: 10.3321/j.issn:1000-0747.2005.06.022

    Chen Li-jing, Li Ning, Wang Jun-qi. Initiation and extension of existing cracks under detonation gas loading in a high energy combined perforation[J]. Petroleum Exploration and Development, 2005, 32(6): 91-94. doi: 10.3321/j.issn:1000-0747.2005.06.022
    [14]
    陈莉静, 李宁, 王俊奇.油井爆生气体对岩石劈裂作用机制探索[J].岩石力学与工程学报, 2006, 25(11): 2369-2372. doi: 10.3321/j.issn:1000-6915.2006.11.031

    Chen Li-jing, Li Ning, Wang Jun-qi. Approximative analysis of fracture propagation driven by detonation gas in oil well[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2369-2372. doi: 10.3321/j.issn:1000-6915.2006.11.031
    [15]
    李宁, 陈莉静, 张平.爆生气体驱动岩石裂缝动态扩展分析[J].岩土工程学报, 2006, 28(4): 460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007

    Li Ning, Chen Li-jing, Zhang Ping. Dynamic analysis for fracturing progress by detonation gas[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007
    [16]
    Petitjean L, Couet B. Modeling of fracture propagation during overbalanced perforating[C]//SPE28560, SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 1994.
  • Cited by

    Periodical cited type(18)

    1. 孙伟,张广清. 变载荷压裂特征研究进展及展望. 石油科学通报. 2025(01): 87-106 .
    2. 王宇,翟成,余旭,孙勇,丛钰洲. 高温作用下五峰组–龙马溪组页岩动力学特征及损伤演化规律研究. 岩石力学与工程学报. 2023(05): 1110-1123 .
    3. 邱思杨,李沁,陈文玲,石明星,张建伟,雷雲. 破碎岩石内水力裂缝扩展数值模拟研究. 科学技术与工程. 2023(24): 10281-10297 .
    4. 柴亚博,罗宁,张浩浩,李鹏龙,周嘉楠,廖禹成. 甲烷燃爆载荷下页岩裂缝网络发育特征与定量分析. 煤炭学报. 2023(12): 4308-4321 .
    5. 杨敬轩,于斌,匡铁军,刘长友,李文龙. 基于煤岩深孔爆破问题的液体炸药研发与技术. 煤炭学报. 2021(06): 1874-1887 .
    6. 罗伟,林永茂,李海涛. 碳酸盐岩储层射孔穿深的影响规律. 爆破器材. 2020(01): 49-53 .
    7. 罗伟. 川西海相碳酸盐岩储层射孔效率测试评价试验. 工程爆破. 2020(01): 1-6 .
    8. 赵旭. 高能气体压裂过程中压井液运动计算模型研究. 爆破器材. 2020(02): 29-33 .
    9. 黄宇,马宏昊,王林桂,沈兆武,张中雷,姚象洋,陈亚建,王奕鑫. 铝纤维混合燃料破岩激波管作用机理研究. 工程爆破. 2020(02): 17-23 .
    10. 于法浩,李越,尚宝兵,陈征,刘国正. 爆燃压裂井井筒安全控制技术研究与应用. 能源与环保. 2020(12): 71-75 .
    11. 尹虎琛,黄建宁,董时正. 薄互层砂体中层理缝对压裂裂缝扩展认识与实践. 石油化工应用. 2020(11): 65-69 .
    12. 闫炎,管志川,赵效锋,杨才. 固井水泥射孔力学响应规律及损伤特征. 东北石油大学学报. 2019(03): 101-108+11 .
    13. 赵旭. 深层水平井多级复合深穿透定向射孔技术应用研究. 爆破器材. 2019(06): 43-47 .
    14. 尹虎琛,徐洋,王忍峰. 径向缝网压裂工艺技术在超低渗储层的应用. 钻采工艺. 2019(06): 58-61+4 .
    15. 马英文,付团辉,吴泽林,龙海峰. 渤中34-2/4油田外置式复合射孔技术. 油气井测试. 2018(01): 31-36 .
    16. 尹虎琛,赵飞,彭国勋,李祎,刘孟升. 集约式体积改造工艺技术在Z区块的应用. 石油化工应用. 2017(09): 62-66 .
    17. 张财贵,曹富,李炼,周妍,黄润秋,王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度. 力学学报. 2016(03): 624-635 .
    18. 武龙,杨慧壁,魏江伟,张进科,张倩. 姬塬油田低产低效井多缝改造工艺技术研究. 石油化工应用. 2016(05): 33-37 .

    Other cited types(17)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (4319) PDF downloads(729) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return