Citation: | Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. An experimental study on dynamic mechanical property ofultra-light aluminum foam under high temperatures[J]. Explosion And Shock Waves, 2014, 34(4): 433-438. doi: 10.11883/1001-1455(2014)04-0433-06 |
[1] |
Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24: 277-298. doi: 10.1016/S0734-743X(99)00153-0
|
[2] |
Dannemann K A, James L J. High strain rate compression of closed-cell aluminium foams[J]. Materials Science and Engineering: A, 2000, 293: 157-164. doi: 10.1016/S0921-5093(00)01219-3
|
[3] |
Hakamada M, Nomura T, Yamada Y, et al. Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam[J]. Materials Transactions, 2005, 46(7): 1677-1680. doi: 10.2320/matertrans.46.1677
|
[4] |
Cady C M, Gray Ⅲ G T, Liu C, et al. Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature[J]. Materials Science and Engineering: A, 2009, 525: 1-6. doi: 10.1016/j.msea.2009.07.007
|
[5] |
Chen Wei-nong, Song Bo. Split Hopkinson(Kolsky)bar: Design, testing and applications[M]. Springer, 2011.
|
[6] |
Tan P J, Harrigan J J, Reid S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology, 2002, 18: 480-488. doi: 10.1179/026708302225002092
|
[7] |
Lopatnikov S L, Gama B A, Haque M J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61: 61-71. doi: 10.1016/S0263-8223(03)00039-4
|
[8] |
Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics, 2004, 44(3): 300-312. doi: 10.1007/BF02427897
|
[9] |
Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metal[J]. International Journal of Solids and Structures, 2009, 46: 3988-3998. doi: 10.1016/j.ijsolstr.2009.07.024
|
[10] |
王鹏飞, 胡时胜.轴向尺寸对泡沫铝动静态力学性能的影响[J].爆炸与冲击, 2012, 32(4): 393-398. doi: 10.3969/j.issn.1001-1455.2012.04.008
Wang Peng-fei, Hu Shi-sheng. The mechanics property of foam aluminum with different sizes[J]. Explosion and Shock Waves, 2012, 32(4): 393-398. doi: 10.3969/j.issn.1001-1455.2012.04.008
|
[11] |
王鹏飞, 徐松林, 胡时胜.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
Wang Peng-fei, Xu Song-lin, Hu Shi-sheng. Influence of deformation modes on SHPB experimental results of cellular metal material[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
|
[12] |
周国才, 胡时胜, 付峥.用于测量材料高温动态力学性能的SHPB技术[J].实验力学, 2010, 25(1): 9-15.
Zhou Guo-cai, Hu Shi-sheng, Fu Zheng. SHPB technique used for measuring dynamic properties of material in high temperature[J]. Journal of Experimental Mechanics, 2010, 25(1): 9-15.
|
[13] |
Yang L M, Shim V. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31(2): 129-150. doi: 10.1016/j.ijimpeng.2003.09.002
|
[14] |
Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267. doi: 10.1111/j.1151-2916.1994.tb06987.x
|
[15] |
宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击, 2005, 25(3): 207-216. doi: 10.3321/j.issn:1001-1455.2005.03.003
Song Li, Hu Shi-sheng. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3): 207-216. doi: 10.3321/j.issn:1001-1455.2005.03.003
|