Citation: | Shi Ru-chao, Zhang Ya-jun, Xu Sheng-li. Simulation of expanding process of high pressure cylindrical bubblesin underwater explosion using RGFM and high accuracy schemes[J]. Explosion And Shock Waves, 2014, 34(4): 439-443. doi: 10.11883/1001-1455(2014)04-0439-05 |
[1] |
Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(16): 277-282. http://ci.nii.ac.jp/naid/10010262461
|
[2] |
Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123-140. doi: 10.1017/S0022112081002322
|
[3] |
Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Engineering Analysis with Boundary Elements, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1
|
[4] |
Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. Dartmouth, Nova Scotia: Defence Research Estabishment, 1986.
|
[5] |
Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater[J]. Journal of Fluids and Structures, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
|
[6] |
Russo G, Smereka P. A remark on computing distance functions[J]. Journal of Computational Physics, 2000, 163(1): 51-67. doi: 10.1006/jcph.2000.6553
|
[7] |
Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1): 278-232. doi: 10.1137/030601363
|
[8] |
Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
|
[9] |
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159. doi: 10.1006/jcph.1994.1155
|
[10] |
Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681. doi: 10.1016/S0021-9991(03)00301-2
|
[11] |
Aslam T. A partial differential equation approach to multidimensional extrapolation[J]. Journal of Computational Physics, 2004, 193(1): 349-355. doi: 10.1016/j.jcp.2003.08.001
|
[12] |
Wardlaw Jr A B. Underwater explosion test cases[R]. Indian Head Division: Naval Surface Warfare Center, 1998.
|
[13] |
Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[C]//Advanced numerical approximation of nonlinear hyperbolic equations. Springer, 1997: 325-432.
|
[14] |
Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5
|
[15] |
Jiang G S, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. SIAM Journal on Scientific Computing, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X
|