Volume 34 Issue 4
Sep.  2014
Turn off MathJax
Article Contents
Huang Yong-hui, Liu Dian-shu, Li Sheng-lin, Li Xiang-long, Wang Jia-lei. Numerical simulation on pin-point blasting of sloping surface[J]. Explosion And Shock Waves, 2014, 34(4): 495-500. doi: 10.11883/1001-1455(2014)04-0495-06
Citation: Huang Yong-hui, Liu Dian-shu, Li Sheng-lin, Li Xiang-long, Wang Jia-lei. Numerical simulation on pin-point blasting of sloping surface[J]. Explosion And Shock Waves, 2014, 34(4): 495-500. doi: 10.11883/1001-1455(2014)04-0495-06

Numerical simulation on pin-point blasting of sloping surface

doi: 10.11883/1001-1455(2014)04-0495-06
Funds:  Supported bythe National Natural Science Foundation of China (51304087)
More Information
  • Corresponding author: Huang Yong-hui, 8176309@qq.com
  • Received Date: 2012-11-22
  • Rev Recd Date: 2014-06-05
  • Publish Date: 2014-07-25
  • In order to obtain the casting speed of rock in pin-point blasting of sloping surface, a research was carried out by the field test, theoretical analysis, the high-speed photography and numerical simulation. The results of research show that maximum casting speed of rock was in the range of 18-28 m/s which was reached in 93-105 ms after detonation; along the direction of detonation propagating, maximum casting speed of rock increased to a platform firstly, then declined with the same motion resistance; in the end of pin-point blasting, the rock fall as free-faller, and the casting speed of rock vibrated due to the collision of rock; the process of pin-point blasting of sloping surface was simulated with the RHT constitutive model and parameters assorted. The result of numerical simulation was proved by the measurement of high-speed photography
  • loading
  • [1]
    李祥龙, 何丽华, 栾龙发, 等.露天煤矿高台阶抛掷爆破爆堆形态模拟[J].煤炭学报, 2011, 36(9): 1457-1462. http://www.cqvip.com/QK/96550X/201109/39487592.html

    Li Xiang-long, He Li-hua, Ruan Long-fa, et al. Simulation model for muckpile shape of high bench cast blasting in surface coal mine[J]. Journal of China Coal Society, 2011, 36(9): 1457-1462. http://www.cqvip.com/QK/96550X/201109/39487592.html
    [2]
    尤浩生.台阶爆破的计算机模拟[D].北京: 北京科技大学, 1997.
    [3]
    AUTODYN Theory Manual[Z]. Horsham, UK: Century Dynamics Ltd, 2003.
    [4]
    杨秀敏.爆炸冲击现象数值模拟[M].合肥: 中国科技大学出版社, 2010.
    [5]
    Hansson H, Skoglund P. Simulation of concrete penetration in 2D and 3D with the RHT material model[R]. Tumba, Sweden: Swedish Defence Research Agency, 2002.
    [6]
    Lu Yong, Wang Zhong-qi, Chong K. A comparative study of buried structure in soil subjected to blast loads using 2D and 3D numerical simulations[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(4): 275-288. doi: 10.1016/j.soildyn.2005.02.007
    [7]
    Brara A, Klepaczko J R. Fracture energy of concrete at high loading rates in tension[J]. International Journal of Impact Engineering, 2007, 34(3): 424-435. doi: 10.1016/j.ijimpeng.2005.10.004
    [8]
    佟强.中深孔掏槽爆破与矸石块度控制模拟试验研究[D].北京: 中国矿业大学(北京), 2010.
    [9]
    于起峰.摄像测量学原理与应用研究[M].北京: 科学出版社, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (3856) PDF downloads(675) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return