Volume 34 Issue 4
Sep.  2014
Turn off MathJax
Article Contents
Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
Citation: Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07

WENO type entropy consistent scheme for hyperbolic conservation laws

doi: 10.11883/1001-1455(2014)04-0501-07
Funds:  Supported bythe National Natural Science Foundation of China (11171043)
More Information
  • Corresponding author: Nie Yu-feng, yfnie@nwpu.edu.cn
  • Received Date: 2012-11-22
  • Rev Recd Date: 2013-06-03
  • Publish Date: 2014-07-25
  • Compared with entropy stable schemes, entropy consistent schemes control entropy production more exactly and effectively eliminate phenomena such as expansion shocks and spurious oscillations. By using WENO (weighted essentially non-oscillatory) reconstruction of higher order at cell interfaces, a WENO type entropy consistent scheme for hyperbolic conservation laws is presented. The one-dimentional Burgers equation and Euler equations are used to test the proposed scheme. The numerical experiments demonstrate that the scheme is accurate and essentially non-oscillatory.
  • loading
  • [1]
    Roe P L. Approximate Rieman solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [2]
    Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
    [3]
    Roe P L. Affordable, entropy-consistent, flux functions[C]//Oral Talk at Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Lyon, France, 2006.
    [4]
    Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions, Ⅱ: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021
    [5]
    Tadmor E. Numerical viscosity and the entropy conditions for conservative difference schemes[J]. Mathematics of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
    [6]
    Liu X D, Osher O, Chan T. Weighted essentially non-oscillatory schems[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [7]
    Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. doi: 10.1017/S0962492902000156
    [8]
    Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations[R]. Hong Kong: Foundations of Computational Mathematics, 2008.
    [9]
    Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (3299) PDF downloads(468) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return