Citation: | Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07 |
[1] |
Roe P L. Approximate Rieman solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
|
[2] |
Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
|
[3] |
Roe P L. Affordable, entropy-consistent, flux functions[C]//Oral Talk at Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Lyon, France, 2006.
|
[4] |
Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions, Ⅱ: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021
|
[5] |
Tadmor E. Numerical viscosity and the entropy conditions for conservative difference schemes[J]. Mathematics of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
|
[6] |
Liu X D, Osher O, Chan T. Weighted essentially non-oscillatory schems[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
|
[7] |
Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. doi: 10.1017/S0962492902000156
|
[8] |
Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations[R]. Hong Kong: Foundations of Computational Mathematics, 2008.
|
[9] |
Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X
|