Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06
Citation: Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06

Two dimensional simulation for shock wave produced by strong explosion in free air

doi: 10.11883/1001-1455(2015)04-0585-06
  • Received Date: 2013-12-04
  • Rev Recd Date: 2014-07-09
  • Publish Date: 2015-07-25
  • Aimed to simulate the propagation of blast wave with high density ratio and high pressure ratio produced by strong explosion in the air, a two dimensional numerical program is written in which the problem is treated as a two-medium compressible flow with sharp material interface in Eulerian grids. In this method, the finite volume method is used to solve the Euler equations, level set method is used to capture the moving interface, and the numerical flux across the interface is calculated by exactly solving the Riemann problem. Mesh adaption technique in triangle meshes is adopted to refine or coarsen the meshes which can both capture the peak overpressure and improve the computational efficiency. One kiloton nuclear charge of strong explosion in free air is simulated. The shock wave parameters, including peak overpressure, shock arrival time and so on, are in consistence with the point explosion theory, which show the accuracy and efficiency of the numerical methods.
  • [1]
    奥尔连科Л П.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2013, 456-463.
    [2]
    张洪武, 何扬, 张昌权.空中爆炸冲击波地面载荷的数值模拟[J].爆炸与冲击, 1992, 12(2): 188-198. http://www.bzycj.cn/article/id/10725

    Zhang Hong-wu, He Yang, Zhang Chang-quan. Numerical simulation on ground surface loading of shock wave from air explosion[J]. Explosion and Shock Waves, 1992, 12(2): 188-198. http://www.bzycj.cn/article/id/10725
    [3]
    岳鹏涛, 徐胜利, 彭金华. FAE爆炸波对地面目标作用的三维数值模拟[J].爆炸与冲击, 2000, 20(2): 195-201. http://www.bzycj.cn/article/id/10262

    Yue Peng-tao, Xu Sheng-li, Peng Jin-hua. 3D numerical simulations on the interaction between FAE blast waves and ground targets[J]. Explosion and Shock Waves, 2000, 20(2): 195-201. http://www.bzycj.cn/article/id/10262
    [4]
    北京工业学院.爆炸及其作用[M].北京: 国防工业出版社, 1979.
    [5]
    Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impactingon material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681. https://www.sciencedirect.com/science/article/pii/S0021999103003012
    [6]
    Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows: The ghost fluid method[J]. Journal of Computational Physics, 1999, 152(2): 457-492. https://www.sciencedirect.com/science/article/pii/S0021999199962368
    [7]
    Colella P, Glaz H M. Efficient solution algorithms for the Riemann problem for real gases[J]. Journal of Computational Physics, 1985, 59(2): 264-289. https://www.sciencedirect.com/science/article/pii/0021999185901469
    [8]
    乔登江.强爆炸物理概论(上册)[M].北京: 国防工业出版社, 2003: 51-55.
    [9]
    杨秀敏.爆炸冲击现象数值模拟[M].合肥: 中国科学技术大学出版社, 2010: 122-125.
    [10]
    Osher S, Sethian J A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-jaccobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. https://www.sciencedirect.com/science/article/pii/0021999188900022
    [11]
    Sussman M, Semerka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(4): 146-159. https://www.sciencedirect.com/science/article/pii/S0021999184711557
    [12]
    张军, 赵宁, 任登凤, 等. level set方法在自适应Catersian网格上的应用[J].爆炸与冲击, 2008, 28(5): 156-161.

    Zhang Jun, Zhao Ning, Ren Deng-feng, et al. Application of the level set method on adaptive cartesian grids[J]. Explosion and Shock Waves, 2008, 28(5): 156-161.
    [13]
    Eleuteuo F T. Riemann solvers and numerical methods for fluid dynamics[M]. First Edition. Springer, 2009: 16-123.
    [14]
    刘儒勋, 舒其望.计算流体的若干新方法[M].北京: 科学出版社, 2003: 121-130.
    [15]
    Di Y N, Li R, Tang T, et al. level set calculations for incompressible two-phase flows on a dynamically adaptive grid[J]. Journal of Scientific Computing, 2007, 31(1/2): 75-98. doi: 10.1007/s10915-006-9119-3
  • Cited by

    Periodical cited type(9)

    1. 宋一娇,孔慧华,李剑,齐子文,张然. 基于超拉普拉斯正则化的冲击波超压层析重建. 电子测量技术. 2024(10): 160-167 .
    2. 尤文斌,丁永红,张超颖,白志强. 高精度冲击波测试压电适配器的研究. 火炮发射与控制学报. 2021(01): 15-18 .
    3. 姚成宝,付梅艳,闫凯,韩峰. 基于Riemann问题的可压缩多介质流体数值模拟及在二维爆炸冲击波传播问题中的应用. 火炸药学报. 2020(03): 254-261 .
    4. 尤文斌,丁永红. 基于WPSO-PO的冲击波测试适配器参数优化研究. 仪器仪表学报. 2020(10): 221-228 .
    5. 吴赛,赵均海,张冬芳,王娟. 自由空气中爆炸冲击波的数值分析. 工程爆破. 2019(03): 1-6+31 .
    6. 姚成宝,王宏亮,浦锡锋,寿列枫,王智环. 空中强爆炸冲击波地面反射规律数值模拟研究. 爆炸与冲击. 2019(11): 24-31 . 本站查看
    7. 张柏华,何增,田宙,贾雷明,姚成宝,浦锡锋. 密闭空腔内强爆炸冲击波壁面反射规律研究. 兵工学报. 2018(S1): 91-95 .
    8. 谷鸿平,柳雯,李广嘉. 起爆方式对柱形炸药空爆冲击波场的影响. 爆破. 2016(04): 34-38 .
    9. 刘晓峰,年鑫哲,王希之,谢兴博,谭雪刚. 冲击波反射超压沿刚性墙面的分布规律. 工程爆破. 2015(05): 28-31 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (4500) PDF downloads(763) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return