Citation: | Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08 |
[1] |
Allen W A, Mayfield E B, Morrison H L. Dynamics of a projectile penetration sand[J]. Journal of Applied Physics, 1957, 28(3): 370-376. doi: 10.1063/1.1722750
|
[2] |
Allen W A, Mayfield E B, Morrison H L. Dynamics of a projectile penetration sand: Part Ⅱ[J]. Journal of Applied Physics, 1957, 28(11): 1331-1335. doi: 10.1063/1.1722645
|
[3] |
Mesri G, Feng T W, Benak J M. Post densification penetration resistance of clean sands[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1095-1115. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg15/ref15&dbid=16&doi=10.1139%2ft11-098&key=10.1061%2f(asce)0733-9410(1990)116%3a7(1095)
|
[4] |
Goldman D I, Umbanhowar P. Scaling and dynamics of sphere and disk impact into granular media[J]. Physical Review E, 2008, 77(2): 021308. doi: 10.1103/PhysRevE.77.021308
|
[5] |
Collins A L, Addiss J W, Walley S M, et al. The effect of nose shape on the internal flow fields during ballistic penetration of sand[J]. International Journal of Impact Engineering, 2011, 38(12): 951-963. doi: 10.1016/j.ijimpeng.2011.08.002
|
[6] |
Borg J P, Morrissey M P, Perich C A, et al. In situ velocity and stress characterization of a projectile penetrating a sand target: Experimental measurements and continuum simulations[J]. International Journal of Impact Engineering, 2013, 51(1): 23-35. http://www.sciencedirect.com/science/article/pii/S0734743X12001510
|
[7] |
Forrestal M J, Norwood F R, Longcope D B. Penetration into targets described by locked hydrostats and shear strength[J]. International Journal of Solids and Structures, 1981, 17(9): 915-924. doi: 10.1016/0020-7683(81)90106-2
|
[8] |
Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3): 427-444. doi: 10.1016/0734-743X(92)90167-R
|
[9] |
Boguslavskii Y, Drabkin S, Juran I, et al. Theory and practice of projectile's penetration in soils[J]. Journal of Geotechnical Engineering, 1996, 122(10): 806-812. doi: 10.1061/(ASCE)0733-9410(1996)122:10(806)
|
[10] |
Salgado R, Mitchell J K, Jamiolkowski M. Cavity expansion and penetration resistance in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 344-354. doi: 10.1061/(ASCE)1090-0241(1997)123:4(344)
|
[11] |
Savvateev A F, Budin A V, Kolikov V A, et al. High-speed penetration into sand[J]. International Journal of Impact Engineering, 2001, 26(1/2/3/4/5/6/7/8/9/10): 675-681. http://www.sciencedirect.com/science/article/pii/S0734743X01001324
|
[12] |
Kotov V L, Balandin V V, Bragov A M, et al. Using a local interaction model to determine the resistance to penetration of projectiles into sandy soil[J]. Journal of Applied Mechanics and Technical Physics, 2013, 54(4): 612-621. doi: 10.1134/S0021894413040123
|
[13] |
Onate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27/28/29): 3087-3128. http://www.sciencedirect.com/science/article/pii/S0045782504001215
|
[14] |
Tong X, Tuan C Y. Viscoplastic cap model for soils under high strain rate loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 206-214. doi: 10.1061/(ASCE)1090-0241(2007)133:2(206)
|
[15] |
Dwivedi S K, Teeter R D, Felice C W, et al. Two dimensional mesoscale simulations of projectile instability during penetration in dry sand[J]. Journal of Applied Physics, 2008, 104(8): 083502. doi: 10.1063/1.2999391
|
[16] |
Kharab A, Hudspeth R T, Guenther R B. Penetration of cylindrical projectiles into saturated sandy media[J]. Experimental Mechanics, 2009, 49(5): 605-612. doi: 10.1007/s11340-008-9190-9
|
[17] |
Carroll M M, Holt A C. Static and dynamic porecolapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1636. doi: 10.1063/1.1661372
|
[18] |
Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4): 2812-2825. doi: 10.1063/1.329011
|
[19] |
Leppanen J. Dynamic behaviour of concrete structures subjected to blast and fragment impacts[D]. Sweden: Chalmers University of Technology, 2002: .
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[2] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[3] | Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning. Deformation and failure of reinforced concrete beams under blast loading[J]. Explosion And Shock Waves, 2015, 35(2): 177-183. doi: 10.11883/1001-1455(2015)02-0177-07 |
[4] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[5] | Guo Lei, He Yong, Zhang Nian-song, Pang Chun-xu, Zheng Hao. On the mass loss of a projectile based on the Archard theory[J]. Explosion And Shock Waves, 2014, 34(5): 622-629. doi: 10.11883/1001-1455(2014)05-0622-08 |
[6] | Fan Zhi-geng, Chen Chang-qing, Wan Qiang. Finite element simulation on the rate-dependent properties of aluminum foams[J]. Explosion And Shock Waves, 2014, 34(6): 742-747. doi: 10.11883/1001-1455(2014)06-0742-06 |
[7] | Jin Long-wen, Lei Bin, Li Zhi-yuan, Zhang Qian. Formation mechanism analysis and numerical simulation of railgun gouging[J]. Explosion And Shock Waves, 2013, 33(5): 537-543. doi: 10.11883/1001-1455(2013)05-0537-07 |
[8] | HeLi-ling, GaoJin-zhong, ChenXiao-wei, SunYuan-cheng, JiYong-qiang. Experimentalstudyonmeasurementtechnologyforprojectiledeceleration[J]. Explosion And Shock Waves, 2013, 33(6): 608-612. doi: 10.11883/1001-1455(2013)06-0608-05 |
[9] | XIE Fan, ZHANG Tao, CHEN Ji-en, LIU Tu-guang. Updatingofthestresstriaxialitybyfiniteelementanalysi[J]. Explosion And Shock Waves, 2012, 32(1): 8-14. doi: 10.11883/1001-1455(2012)01-0008-07 |
[10] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[11] | LI Jian, RONG Ji-li, XIANG Da-lin. Effectsofchargemassandwaterdepthondynamicbehaviorsof anunderwaterexplosionbubble[J]. Explosion And Shock Waves, 2010, 30(4): 342-348. doi: 10.11883/1001-1455(2010)04-0342-07 |
[12] | WANG Yi-nan, HUANG Feng-lei, DUAN Zhuo-ping. Bendingofprojectilewithsmallangleofattack duringhigh-speedpenetrationofconcretetargets[J]. Explosion And Shock Waves, 2010, 30(6): 598-606. doi: 10.11883/1001-1455(2010)06-0598-09 |
[13] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[14] | ZHANG Xiao-tian, JIA Guang-hui, HUANG Hai. Simulationofhypervelocity-impactdebrisclouds usingaLagrangeFEM withnodeseparation[J]. Explosion And Shock Waves, 2010, 30(5): 499-504. doi: 10.11883/1001-1455(2010)05-0499-06 |
[15] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |
[16] | JU Yang, HUAN Xiao-feng, SONG Zhen-duo, TIAN Lu-lu, MAO Yan-zhe. Numerical analyses of blast wave stress propagation and damage evolution in rock masses[J]. Explosion And Shock Waves, 2007, 27(2): 136-142. doi: 10.11883/1001-1455(2007)02-0136-07 |
[17] | ZHENG Bo, WANG An-wen. Finite element analysis for elastic-plastic dynamic postbuckling of bars subjected to axial impact[J]. Explosion And Shock Waves, 2007, 27(2): 126-130. doi: 10.11883/1001-1455(2007)02-0126-05 |
[18] | WANG Ji, WANG Xiao-jun, BIAN Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics[J]. Explosion And Shock Waves, 2007, 27(6): 522-528. doi: 10.11883/1001-1455(2007)06-0522-07 |
[19] | SONG Shun-cheng, CAI Hong-nian, WANG Fu-chi. 3D-numerical simulations on impact and perforation of concrete targets by projectiles[J]. Explosion And Shock Waves, 2006, 26(1): 1-6. doi: 10.11883/1001-1455(2006)01-0001-06 |
[20] | WANG Feng, WANG Xiao-jun, HU Xiu-zhang1, LIU Wen-tao. Oblique penetration of an ogive-nosed rod into the aluminum target[J]. Explosion And Shock Waves, 2005, 25(3): 265-270. doi: 10.11883/1001-1455(2005)03-0265-06 |
1. | Wei Guo,Yanyu Qiu,Mingyang Wang. High-velocity projectile penetration test and theoretical calculation of pseudo fluid penetration of calcareous sand. Defence Technology. 2024(12): 105-115 . ![]() |