Citation: | Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07 |
[1] |
Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40. doi: 10.1063/1.881318
|
[2] |
Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process[R]. AIAA, 1987: 87-1880.
|
[3] |
Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J]. Combustion and Flame, 2007, 148(1/2): 4-47. http://www.sciencedirect.com/science/article/pii/s0010218006001817
|
[4] |
Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]∥6th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1957: 387-398.
|
[5] |
Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modeling, 2001, 5(4): 573-594. doi: 10.1088/1364-7830/5/4/304
|
[6] |
Batley G A, Mcintosh A C, Brindley J, et al. A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame[J]. Journal of Fluid Mechanics, 1994, 279: 217-237. doi: 10.1017/S0022112094003897
|
[7] |
Batley G A, Mcintosh A C, Brindley J. The baroclinic effect in combustion[J]. Mathematical and Computer Modelling, 1996, 24(8): 165-176. doi: 10.1016/0895-7177(96)00148-3
|
[8] |
Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]∥27th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1998: 735-741.
|
[9] |
Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame[J]. Combustion and Flame, 1999, 117(1/2): 99-116. http://www.sciencedirect.com/science/article/pii/S001021809800090X
|
[10] |
Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999, 117(3): 323-339. http://www.sciencedirect.com/science/article/pii/S0010218098000765
|
[11] |
Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999, 119(4): 400-416. http://www.sciencedirect.com/science/article/pii/S0010218099000589
|
[12] |
Dong G, Fan B C, Ye J F. Numerical investigation of ethylene flame bubble instability induced by shock waves[J]. Shock Waves, 2008, 17(6): 409-419. doi: 10.1007/s00193-008-0124-3
|
[13] |
朱跃进, 董刚, 范宝春.受限空间内激波与火焰作用的三维计算[J].推进技术, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
Zhu Yue-jin, Dong Gang, Fan Bao-chun. Three-dimensional computation of the interactions between shock waves and flame in a confined space[J]. Journal of Propulsion Technology, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
|
[14] |
Zhu Y J, Dong G, Liu Y X. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows[J]. Combustion Science and Technology, 2013, 185(10): 1415-1440. doi: 10.1080/00102202.2013.798656
|
[15] |
朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
Zhu Yue-jin, Dong Gang, Liu Yi-xin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
|
[16] |
都志辉.高性能计算之并行编程技术----MPI并行程序设计[M].北京: 清华大学出版社, 2001.
|
[17] |
Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
|
[18] |
Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
|
[19] |
Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Physics of Fluids, 2009, 21(7): 074102. doi: 10.1063/1.3176474
|