Citation: | Li Shiqiang, Li Xin, Wu Guiying, Wang Zhihua, Zhao Longmao. Dynamic response of functionally graded honeycomb sandwich plates under blast loading[J]. Explosion And Shock Waves, 2016, 36(3): 333-339. doi: 10.11883/1001-1455(2016)03-0333-07 |
[1] |
Gibson L J, Ashby M F. Cellular solids:structure and properties[M]. 2nd ed. UK: Cambridge University Press, 1997.
|
[2] |
Xu S, Beynon J H, Ruan D, et al. Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47(4):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b737c215a5c95f04f084612dbbe8cc31
|
[3] |
Zhao H, Gary G. Crushing behavior of aluminum honeycombs under impact loading[J]. International Journal of Impact Engineering, 1998, 21(10):827-836. doi: 10.1016/S0734-743X(98)00034-7
|
[4] |
Zhang X, Zhang H, Wen Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations[J]. International Journal of Impact Engineering, 2014, 66:48-59. doi: 10.1016/j.ijimpeng.2013.12.009
|
[5] |
Liang C-C, Yang M-F, Wu P-W. Optimum desing of metallic corrugated core sandwich panals subjected to blast loads[J]. Ocean Engineering, 2001, 28(7):825-861. doi: 10.1016/S0029-8018(00)00034-2
|
[6] |
McShane G J, Radford D D, Deshhpand V S, et al. The response of clamped sandwich plates subjected to shock loading[J]. European Journal of Mechanics:A: Solids, 2006, 25:215-129. doi: 10.1016/j.euromechsol.2005.08.001
|
[7] |
Etemadi E, Khatibi A A, Takaffoli M. 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact[J].Composite Structures, 2009, 89(1):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c779283517114a83e1dcbf0c191bfd52
|
[8] |
Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials[J]. Material Science Engineering A: Structural Materials Properties Microstructure and Processing, 2009, 507(1/2):215-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1025aa7dec927f9329dc64fdf4c8c9b2
|
[9] |
Gardner N, Wang E, Shukla A. Performance of functionally graded sandwich composite beams under shock wave loading[J]. Composite Structures, 2012, 94(5):1755-1770. doi: 10.1016/j.compstruct.2011.12.006
|
[10] |
Liu X, Tian X, Lu T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J]. Composite Structures, 2012, 94(8):2485-2493. doi: 10.1016/j.compstruct.2012.02.029
|
[11] |
Liu X, Tian X, Lu T, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading[J].International Journal of Mechanical Sciences, 2014, 84:61-72. doi: 10.1016/j.ijmecsci.2014.03.021
|
[12] |
Li Y, Ramesh K T, Chin E S C. Dynamic characterization of layered and graded structures under impulsive loading[J].International Journal of Solids and Structures, 2001, 38(34/35):6045-6061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848d4eafbd2d38bfbb11723d8a0b89f7
|
[13] |
Apetre N A, Sankar B V, Ambur D R. Low-velocity impact response of sandwich beams with functionally graded core[J]. International Journal of Solids and Structures, 2006, 43(9):2479-2496. doi: 10.1016/j.ijsolstr.2005.06.003
|
[14] |
Zhang L, Hebert R, Wright J T, et al. Dynamic response of corrugated sandwich steel plates with graded cores[J]. International Journal of Impact Engineering, 2014, 65:185-194. doi: 10.1016/j.ijimpeng.2013.11.011
|
[15] |
敬霖, 王志华, 赵隆茂.爆炸荷载作用下结构冲量的测量[J].实验力学, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010
Jing Lin, Wang Zhihua, Zhao Longmao. Measurement of impulse acted on a structure subjected to blast loading[J]. Journal of Experimental Mechanics, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010
|
[16] |
Nurick G N, Langdon G S, Chi Y, et al. Behaviour of sandwich panels subjected to intense air blast: Part 1: Experiments[J]. Composite Structures, 2009, 91:433-441. doi: 10.1016/j.compstruct.2009.04.009
|
[17] |
Zhu F, Zhao L, Lu G, et al. Deformation and failure of blast-loaded metallic sandwich panels- Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003
|
[18] |
Makris A, Frost D L, Nerenberg J, et al. Attenuation of a blast wave with a cellular material[C]//Proceedings of the 20th International Symposium on Shock Waves (ISSW/20). Pasadena, CA, USA, 1996, 2: 1387-1392.
|
[19] |
Bruck H A. A one-dimensional model for designing functionally graded materials to manage stress waves[J]. International Journal of Solids and Structures, 2000, 37(44):6383-6395. doi: 10.1016/S0020-7683(99)00236-X
|
[20] |
Samadhiya R, Mukherjee A, Schmauder S. Characterization of discretely graded materials using acoustic wave propagation[J]. Computation Materials Science, 2006, 37(1/2):20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01a4baee81dc96c11d1744558ed8b69e
|
[21] |
宋博, 胡时胜, 王礼立.分层材料的不同排列次序对透射冲击波强度的影响[J].兵工学报, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021
Song Buo, Hu Shisheng, Wang Lili. Influnence on the transmitted intensity of shock wave through different tactic orders of layered materials[J]. Acta Armamentarii, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021
|