Li Shiqiang, Li Xin, Wu Guiying, Wang Zhihua, Zhao Longmao. Dynamic response of functionally graded honeycomb sandwich plates under blast loading[J]. Explosion And Shock Waves, 2016, 36(3): 333-339. doi: 10.11883/1001-1455(2016)03-0333-07
Citation: Li Shiqiang, Li Xin, Wu Guiying, Wang Zhihua, Zhao Longmao. Dynamic response of functionally graded honeycomb sandwich plates under blast loading[J]. Explosion And Shock Waves, 2016, 36(3): 333-339. doi: 10.11883/1001-1455(2016)03-0333-07

Dynamic response of functionally graded honeycomb sandwich plates under blast loading

doi: 10.11883/1001-1455(2016)03-0333-07
  • Received Date: 2014-10-13
  • Rev Recd Date: 2015-02-10
  • Publish Date: 2016-05-25
  • In this paper we report on the tests that investigate the blast resistance of graded sandwich plates. The deformation model, the back-face-sheet deflections and the core compressions have been compared with the test results obtained from tests done on structures with ungraded core layers. The stress transfer characteristics are analyzed based on the one dimensional stress wave theory, indicating that the stress wave transferred factor is smaller in the graded core layers and it is smallest in the relative density-tapered core arrangement specimen. By considering the deformation model, back-face-sheet deflections, core compressions and stress transfer characteristics, the blast resistance of the graded sandwich plates is found to be better than that of the ungraded ones, and in the present loading conditions, the relative density-tapered core arrangement from the front sheet to the back sheet is found to have the best blast resistance.
  • [1]
    Gibson L J, Ashby M F. Cellular solids:structure and properties[M]. 2nd ed. UK: Cambridge University Press, 1997.
    [2]
    Xu S, Beynon J H, Ruan D, et al. Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47(4):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b737c215a5c95f04f084612dbbe8cc31
    [3]
    Zhao H, Gary G. Crushing behavior of aluminum honeycombs under impact loading[J]. International Journal of Impact Engineering, 1998, 21(10):827-836. doi: 10.1016/S0734-743X(98)00034-7
    [4]
    Zhang X, Zhang H, Wen Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations[J]. International Journal of Impact Engineering, 2014, 66:48-59. doi: 10.1016/j.ijimpeng.2013.12.009
    [5]
    Liang C-C, Yang M-F, Wu P-W. Optimum desing of metallic corrugated core sandwich panals subjected to blast loads[J]. Ocean Engineering, 2001, 28(7):825-861. doi: 10.1016/S0029-8018(00)00034-2
    [6]
    McShane G J, Radford D D, Deshhpand V S, et al. The response of clamped sandwich plates subjected to shock loading[J]. European Journal of Mechanics:A: Solids, 2006, 25:215-129. doi: 10.1016/j.euromechsol.2005.08.001
    [7]
    Etemadi E, Khatibi A A, Takaffoli M. 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact[J].Composite Structures, 2009, 89(1):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c779283517114a83e1dcbf0c191bfd52
    [8]
    Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials[J]. Material Science Engineering A: Structural Materials Properties Microstructure and Processing, 2009, 507(1/2):215-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1025aa7dec927f9329dc64fdf4c8c9b2
    [9]
    Gardner N, Wang E, Shukla A. Performance of functionally graded sandwich composite beams under shock wave loading[J]. Composite Structures, 2012, 94(5):1755-1770. doi: 10.1016/j.compstruct.2011.12.006
    [10]
    Liu X, Tian X, Lu T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J]. Composite Structures, 2012, 94(8):2485-2493. doi: 10.1016/j.compstruct.2012.02.029
    [11]
    Liu X, Tian X, Lu T, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading[J].International Journal of Mechanical Sciences, 2014, 84:61-72. doi: 10.1016/j.ijmecsci.2014.03.021
    [12]
    Li Y, Ramesh K T, Chin E S C. Dynamic characterization of layered and graded structures under impulsive loading[J].International Journal of Solids and Structures, 2001, 38(34/35):6045-6061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848d4eafbd2d38bfbb11723d8a0b89f7
    [13]
    Apetre N A, Sankar B V, Ambur D R. Low-velocity impact response of sandwich beams with functionally graded core[J]. International Journal of Solids and Structures, 2006, 43(9):2479-2496. doi: 10.1016/j.ijsolstr.2005.06.003
    [14]
    Zhang L, Hebert R, Wright J T, et al. Dynamic response of corrugated sandwich steel plates with graded cores[J]. International Journal of Impact Engineering, 2014, 65:185-194. doi: 10.1016/j.ijimpeng.2013.11.011
    [15]
    敬霖, 王志华, 赵隆茂.爆炸荷载作用下结构冲量的测量[J].实验力学, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010

    Jing Lin, Wang Zhihua, Zhao Longmao. Measurement of impulse acted on a structure subjected to blast loading[J]. Journal of Experimental Mechanics, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010
    [16]
    Nurick G N, Langdon G S, Chi Y, et al. Behaviour of sandwich panels subjected to intense air blast: Part 1: Experiments[J]. Composite Structures, 2009, 91:433-441. doi: 10.1016/j.compstruct.2009.04.009
    [17]
    Zhu F, Zhao L, Lu G, et al. Deformation and failure of blast-loaded metallic sandwich panels- Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003
    [18]
    Makris A, Frost D L, Nerenberg J, et al. Attenuation of a blast wave with a cellular material[C]//Proceedings of the 20th International Symposium on Shock Waves (ISSW/20). Pasadena, CA, USA, 1996, 2: 1387-1392.
    [19]
    Bruck H A. A one-dimensional model for designing functionally graded materials to manage stress waves[J]. International Journal of Solids and Structures, 2000, 37(44):6383-6395. doi: 10.1016/S0020-7683(99)00236-X
    [20]
    Samadhiya R, Mukherjee A, Schmauder S. Characterization of discretely graded materials using acoustic wave propagation[J]. Computation Materials Science, 2006, 37(1/2):20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01a4baee81dc96c11d1744558ed8b69e
    [21]
    宋博, 胡时胜, 王礼立.分层材料的不同排列次序对透射冲击波强度的影响[J].兵工学报, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021

    Song Buo, Hu Shisheng, Wang Lili. Influnence on the transmitted intensity of shock wave through different tactic orders of layered materials[J]. Acta Armamentarii, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021
  • Cited by

    Periodical cited type(8)

    1. 王继运,张胜兰,郑冬黎,李晟昊. 蜂窝夹层结构高速冲击试验与仿真研究综述. 复合材料科学与工程. 2024(10): 140-149 .
    2. 顾永强,王立立,贾宏玉. 正弦曲边箭形蜂窝夹芯板抗爆性能研究. 内蒙古科技大学学报. 2023(04): 344-348 .
    3. 王海任,李世强,刘志芳,雷建银,李志强,王志华. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为. 爆炸与冲击. 2021(04): 129-137 . 本站查看
    4. 赵著杰,侯海量,李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展. 中国舰船研究. 2021(03): 96-111 .
    5. 马衍轩,李梦瑶,朱鹏飞,徐亚茜,于霞,彭帅,张鹏,张颖锐,王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展. 材料导报. 2021(17): 17190-17198 .
    6. 徐世烺,李锐,李庆华,陈柏锟. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟. 工程力学. 2020(08): 123-133+178 .
    7. 于博丽,冯根柱,李世强,刘志芳. 横向爆炸载荷下薄壁圆管的动态响应. 爆炸与冲击. 2019(10): 22-30 . 本站查看
    8. 周楠,蒋敬,樊武龙,唐松泽. 泡沫铝夹芯材料抗爆抗侵彻性能研究进展. 科学技术与工程. 2017(04): 117-125 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (4364) PDF downloads(604) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return