Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Wang Jian, Ruan Wenjun, Wang Hao, Zhang Lei. CFD analysis on the process of solid rocket gas jet driving liquid column[J]. Explosion And Shock Waves, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08
Citation: Wang Jian, Ruan Wenjun, Wang Hao, Zhang Lei. CFD analysis on the process of solid rocket gas jet driving liquid column[J]. Explosion And Shock Waves, 2017, 37(2): 186-193. doi: 10.11883/1001-1455(2017)02-0186-08

CFD analysis on the process of solid rocket gas jet driving liquid column

doi: 10.11883/1001-1455(2017)02-0186-08
  • Received Date: 2016-06-03
  • Rev Recd Date: 2016-09-08
  • Publish Date: 2017-03-25
  • A complex unsteady multiphase flow field is produced in the process of solid rocket gas jet driven liquid column. In this work, to study the temperature-reducing effect of the liquid column on the jet flow field of the solid rocket motor and reveal the flow evolution and the interaction between gas and water, the coupling flow and phase transition process of the gas and liquid column are simulated using the VOF multiphase flow model coupled with the FLUENT software. The results are compared with the calculation results of the jet flow field where no liquid column exists. The calculation results show that the pressure, temperature and velocity fluctuation in the jet flow field decreased when the liquid column is taken as an equilibrium body. The turbulence in tensity in the jet flow field is reduced. The development of the axial displacement of the jet flow field is reduced by the vaporization of the gas and the liquid column as well as the blocking action of the liquid column. The peak pressure is reduced by 0.9 MPa, the peak temperature by 503 K and the peak velocity by 291 m/s in the core area of the jet flow field, thus verifying the temperature-reducing effect of the liquid column on the gas jet flow field.
  • loading
  • [1]
    Molnar M M. New reduced two-time step method for calculating combustion and emission rates of jet-A and methane fuel with and without water injection: AIAA 2004-2130[R]. NASA, 2004.
    [2]
    Giordan P, Fleury P, Guidon I. Simulation of water injection into a rocket motor plume[C]//Los Angeles: AIAA/ASME/SAE/ASEE 35th Joint Propulsion Conference and Exhibit, 1999.
    [3]
    周帆, 姜毅, 郝继光.火箭发动机尾焰流场注水降温效果初探[J].推进技术, 2012, 33(2), 249-252. http://d.old.wanfangdata.com.cn/Periodical/tjjs201202015

    Zhou Fan, Jiang Yi, Hao Jiguang. Exploring on cooling effect of water injection on rocket motor exhaust[J]. Journal of Propulsion Technology, 2012, 33(2):249-252. http://d.old.wanfangdata.com.cn/Periodical/tjjs201202015
    [4]
    马艳丽, 姜毅, 王伟臣, 等.喷水对火箭发动机羽流红外特性的抑制作用研究[J].北京理工大学学报, 2011, 31(7):776-780. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201107006

    Ma Yanli, Jiang Yi, Wang Weichen, et al. Research on infrared radiation suppression of rocket motor exhaust plume with water injection[J]. Transactions of Beijing institute of Technology, 2011, 31(7):776-780. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201107006
    [5]
    张磊, 阮文俊, 王浩.单兵火箭燃气射流噪声抑制的实验研究[J].火力与指挥控制, 2015, 40(7):174-176. doi: 10.3969/j.issn.1002-0640.2015.07.043

    Zhang Lei, Ruan Wenjun, Wang Hao. Experimental study on restraint of individual rocket jet noise[J]. Fire Control and Command Control, 2015, 40(7):174-176. doi: 10.3969/j.issn.1002-0640.2015.07.043
    [6]
    Sutherland L C. Effect of water to ablative performance under solid rocket exhaust environment[C]//Monterey: AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, 1993.
    [7]
    Kandula M, Lonergan M. Effective jet properties for the estimation of turbulent mixing noise reduction by water injection: AIAA 2007-3645[R]. AIAA, 2007.
    [8]
    Thomas D N. Reductions in multi-component jet noise by water injection: AIAA 2004-2976[R]. Hampton, VA, USA: NASA Langley Research, 2004.
    [9]
    王兴, 郑刘, 周月荣.不同喷嘴射流流场结构及噪声[J].推进技术, 2011, 32(3):365-369. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103013

    Wang Xing, Zheng Liu, Zhou Yuerong. Flow field structure and noise for different nozzles[J]. Journal of Propulsion Technology, 2011, 32(3):365-369. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103013
    [10]
    汪海洋, 李晓东.超声速喷流啸声的控制方法[J].推进技术, 2007, 28(2):211-215. doi: 10.3321/j.issn:1001-4055.2007.02.023

    Wang Haiyang, Li Xiaodong. Control methods for sup-ersonic jet screech tones[J]. Journal of Propulsion Technology, 2007, 28(2):211-215. doi: 10.3321/j.issn:1001-4055.2007.02.023
    [11]
    万云霞, 黄勇, 朱英.液体圆柱射流破碎过程实验[J].航空动力学报, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002

    Wan Yunxia, Huang Yong, Zhu Ying. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200802002
    [12]
    甘晓松, 贾有军, 鲁传敬.水下燃气射流流场数值研究[J].固体火箭技术, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006

    Gan Xiaosong, Jia Youjun, Lu Chuanjing.Research on numerial simulation of combustion gas jet under water[J]. Journal of Solid Rocket Technology, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006
    [13]
    王乐勤, 郝宗睿, 吴大转.水下气体射流初期流场的数值研究[J].工程热物理学报, 2009, 30(7):1132-1135. doi: 10.3321/j.issn:0253-231X.2009.07.014

    Wang Leqin, Hao Zongrui, Wu Dazhuan.Numerical simulation of initial flow field of underwater gas jet[J]. Journal of Engineering Thermophysics, 2009, 30(7):1132-1135. doi: 10.3321/j.issn:0253-231X.2009.07.014
    [14]
    向敏, 吴雄, 张为华, 等.水下固体发动机尾流场数值计算[J].推进技术, 2009, 30(4):479-483. doi: 10.3321/j.issn:1001-4055.2009.04.018

    Xiang Min, Wu Xiong, Zhang Weihua, et al. Numerical simulation for underwater solid motor tail flow[J]. Journal of Propulsion Technology, 2009, 30(4):479-483. doi: 10.3321/j.issn:1001-4055.2009.04.018
    [15]
    汪送, 战仁军, 张威, 等.管内高压气体冲击静态液柱的CFD模拟[J].火力与指挥控制, 2011, 36(3):45-48. doi: 10.3969/j.issn.1002-0640.2011.03.012

    Wang Song, Zhan Renjun, Zhang Wei, et al. CFD Simulation of high-pressure gas impinging onto static water-pole in pipe[J]. Fire Control and Command Control, 2011, 36(3):45-48. doi: 10.3969/j.issn.1002-0640.2011.03.012
    [16]
    罗喜胜, 翟志刚, 司廷, 等.激波诱导下的气体界面不稳定性实验研究[J].力学进展, 2014, 44(7):260-290. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013110422.htm

    Luo Xisheng, Zhai Zhigang, Si Ting, et al. Experimental study on the interfacial instability induced by shock waves[J]. Advances in Mechanics, 2014, 44(7):260-290. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013110422.htm
    [17]
    施红辉, 肖毅, 吴宇, 等.激波诱导的液柱气液界面RM不稳定性的研究[J].工程热物理学报, 2014, 35(9):1775-1779. http://www.cqvip.com/QK/90922X/201409/71678266504849524857485049.html

    Shi Honghui, Xiao Yi, Wu Yu, et al. Experiment study on the richtmyer-meshkov instability in the interaction of shock waves with liquid columns[J]. Journal of Engineering Thermophysics, 2014, 35(9):1775-1779. http://www.cqvip.com/QK/90922X/201409/71678266504849524857485049.html
    [18]
    王翠华.激波与液体相互作用实验研究[D].南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197588.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (4288) PDF downloads(414) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return