Citation: | Lou Jianfeng, Zhang Yangeng, Zhou Tingting, Hong Tao. Numerical method for simulating Steven test basedon thermo-mechanical coupled material model[J]. Explosion And Shock Waves, 2017, 37(5): 807-812. doi: 10.11883/1001-1455(2017)05-0807-06 |
[1] |
Chidester S K, Green L G, Lee C G. A frictional work predictive method for the initiation of solid high explosives from low-pressure impacts[C]//Proceeding of 10th International Detonation Symposium. 1993: 785-792.
|
[2] |
Chidester S K, Tarver C M, Garza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Proceeding of 11th International Detonation Symposium. 1998: 93-100.
|
[3] |
Idar D J, Lucht R A, Straight J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[C]//Proceeding of 11th International Detonation Symposium. 1998: 102-110.
|
[4] |
Scammon R J, Browning R V, Middleditch J, et al. Low amplitude insult project: Structural analysis and prediction of low order reaction[C]//Proceeding of 11th International Detonation Symposium. 1998: 111-118.
|
[5] |
Vandersall K S, Chidester S K, Forbes J W, et al. Experimental and modeling studies of crush, puncture, and perforation scenarios in the steven impact test[C]//Proceeding of 12th International Detonation Symposium. 2002: 131-139.
|
[6] |
Wortley S, Jones A, Cartwright M, et al. Low speed impact of pristine and aged solid high explosive[C]//Proceeding of 12th International Detonation Symposium. 2002: 399-408.
|
[7] |
Switzer L L, Vandersall K S, Chidester S K, et al. Threshold studies of heated HMX-based energetic material targets using the Steven impact test[C]//Proceeding of Shock Compression of Condensed Matter. 2003: 1045-1048.
|
[8] |
Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940
|
[9] |
Murphy M J, Lee E L, Weston A M, et al. Modeling shock initiation in composition B[C]//Proceeding of the 10th International Detonation Symposium. 1993: 786-792.
|
[10] |
Vandersall K S, Tarver C M, Garcia F, et al. Shock initiation experiments on PBX9501 explosive at 150℃ for ignition and growth modeling[C]//Proceeding of Shock Compression of Condensed Matter. 2005: 1127-1130.
|
[11] |
Tarver C M, Lefrancois A S, Lee R S, et al. Shock initiation of the PETN-based explosive LX-16[C]//Proceeding of 13th International Detonation Symposium. 2006: 139.
|
[12] |
Vandersall K S, Tarver C M, Garcia F, et al. Low amplitude single and multiple shock initiation experiments and modeling of LX-04[C]//Proceeding of 13th International Detonation Symposium. 2006: 145.
|
[13] |
Urtiew P A, Vandersall K S, Tarver C M, et al. Shock initiation experiments and modeling of composition B and C-4[C]//Proceeding of 13th International Detonation Symposium. 2006: 147.
|
[14] |
Tarver C M, Chidester S K. Ignition and growth modeling of detonating TATB cones and arcs[C]//Proceeding of Shock Compression of Condensed Matter. 2007: 429-432.
|
[15] |
Chidester S K, Garcia F, Vandersall K S, et al. Shock initiation experiments plus ignition and growth modeling of damaged LX-04 charges[C]//Proceeding of Shock Compression of Condensed Matter. 2009: 271-274.
|
[16] |
May C M, Tarver C M. Modeling short shock pulse duration initiation of LX-16 and LX-10 charges[C]//Proceeding of Shock Compression of Condensed Matter. 2009: 275-278.
|
[17] |
Vandersall K S, Tarver C M, Garcia F, et al. On the low pressure shock initiation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine based plastic bonded explosives[J]. Journal of Applied Physics, 2010, 107(9):094906. doi: 10.1063/1.3407570
|
[18] |
Hallquist J O. LS-DYNA Theoretical manual[Z]. Livemore Software Technology Corporation, 1998.
|
[19] |
Livemore Software Technology Corporation. LS-DYNA Keyword user's manual: Version 970[Z]. 2003.
|