Citation: | Ye Yang, Zeng Yawu, Jin Lei, Xia Lei. Normal restitution coefficient of sandstone spheres[J]. Explosion And Shock Waves, 2017, 37(5): 813-821. doi: 10.11883/1001-1455(2017)05-0813-09 |
[1] |
Macciotta R, Martin C D, Cruden D M. Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation[J]. Landslides, 2015, 12(4):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a9dc57c9a5d9090c5bb8e86734f01e7
|
[2] |
Lu Y E, Zhang L M. Analysis of failure of a bridge foundation under rock impact[J]. Acta Geotechnica, 2012, 7(1):57-68. http://cn.bing.com/academic/profile?id=4a0f22e4c1efd78397c7278dd374361c&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Chai B, Tang Z, Zhang A, et al. An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a limestone quarry in Fengshan, Southwestern China[J]. Rock Mechanics & Rock Engineering, 2015, 48(5):1981-1996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d96584daf19bec589d0d7ae38492ae4
|
[4] |
Antonyuk S, Heinrich S, Tomas J, et al. Energy absorption during compression and impact of dry elastic-plastic spherical granules[J]. Granular Matter, 2010, 12(1):15-47. doi: 10.1007/s10035-009-0161-3
|
[5] |
章广成, 向欣, 唐辉明.落石碰撞恢复系数的现场试验与数值计算[J].岩石力学与工程学报, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021
Zhang Guangcheng, Xiang Xin, Tang Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021
|
[6] |
Dong H K, Gratchev I, Berends J, et al. Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: a case study[J]. Natural Hazards, 2015, 78(3):1-16. http://cn.bing.com/academic/profile?id=9b798d9b1f23ad6aad462d320063ac24&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
叶四桥, 巩尚卿.落石碰撞法向恢复系数的模型试验研究[J].中国铁道科学, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03
Ye Siqiao, Gong Shangqing. Research on normal restitution coefficient of rockfall collision by model tests[J]. China Railway Science, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03
|
[8] |
Asteriou P, Saroglou H, Tsiambaos G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 54(3):103-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff819cc84eb7ffed461e1460602950e4
|
[9] |
Ritchie A M. Evaluation of rockfall and its control[J]. Highway Research Record, 1963, 17:13-28.
|
[10] |
Gigli G, Morelli S, Fornera S, et al. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios[J]. Landslides, 2014, 11(1):1-14. doi: 10.1007/s10346-012-0374-0
|
[11] |
Harp E L, Dart R L, Reichenbach P. Rock fall simulation at timpanogos cave national monument, American Fork Canyon, Utah, USA[J]. Landslides, 2011, 8(3):373-379. doi: 10.1007/s10346-010-0251-7
|
[12] |
Wang X, Frattini P, Crosta G B, et al. Uncertainty assessment in quantitative rockfall risk assessment[J]. Landslides, 2014, 11(4):711-722. doi: 10.1007/s10346-013-0447-8
|
[13] |
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):331-336. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1208.0565
|
[14] |
何思明, 吴永, 李新坡.滚石冲击碰撞恢复系数研究[J].岩土力学, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008
He Siming, Wu Yong, Li Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008
|
[15] |
Landau L D, Lifschitz E M. Theoretische physik. Band Ⅶ: Elastizitä tstheorie[M]. Moskau: Fizmatlit Press, 2001.
|
[16] |
Alizadeh E, Bertrand F, Chaouki J. Development of a granular normal contact force model based on a non-Newtonian liquid filled dashpot[J]. Powder Technology, 2013, 237(3):202-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f1af19143347ad95bb6afc07870ff4a
|
[17] |
Brilliantov N V, Spahn F, Hertzsch J M, et al. Model for collisions in granular gases[J]. Physical Review E, 1996, 53(5):5382-5392. doi: 10.1103/PhysRevE.53.5382
|
[18] |
Fu J, Adams M J, Reynolds G K, et al. Impact deformation and rebound of wet granules[J]. Powder Technology, 2004, 140(3):248-257. doi: 10.1016/j.powtec.2004.01.012
|
[19] |
Higa M, Arakawa M, Maeno N. Size dependence of restitution coefficients of ice in relation to collision strength[J]. Icarus, 1998, 133(2):310-320. doi: 10.1006/icar.1998.5938
|
[20] |
Johnson K L.接触力学[M].徐秉业, 罗学富, 刘信声, 等译.北京: 高等教育出版社, 1992.
|
[21] |
Dmytro A, Elliott J A, Hancock B C. Effect of particle size on energy dissipation in viscoelastic granular collisions[J]. Physical Review E, 2011, 84(2):1713-1724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e426785648408c5d5d449c2a5f36e74
|
[22] |
Wu C Y, Li L Y, Thornton C. Rebound behaviour of spheres for plastic impacts[J]. International Journal of Impact Engineering, 2003, 28(9):929-946. doi: 10.1016/S0734-743X(03)00014-9
|
[23] |
Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64(2):383-386. doi: 10.1115/1.2787319
|
[24] |
Fu J S, Cheong Y S, Reynolds G K, et al. An experimental study of the variability in the properties and quality of wet granules[J]. Powder Technology, 2004, 140(3):209-216. doi: 10.1016/j.powtec.2004.01.019
|