Volume 37 Issue 5
Jul.  2017
Turn off MathJax
Article Contents
Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
Citation: Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08

Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates

doi: 10.11883/1001-1455(2017)05-0871-08
  • Received Date: 2016-02-02
  • Rev Recd Date: 2016-08-13
  • Publish Date: 2017-09-25
  • In order to study the dynamic mechanical properties of 2A16-T4 aluminum alloy, experiments for the alloy at quasi-static, intermediate, and high strain rates were performed using an electronic multi-purpose testing machine, a high velocity hydraulic servo-testing machine and a split Hopkinson press bar (SHPB) at room temperature, and the stress-strain curves at different strain rates were obtained, with a modified Johnson-Cook constitutive model fitted. The dynamic mechanical properties at intermediate strain rates and its influence on the constitutive model's parameters were analyzed. The results show that the strain rate hardening effect on the 2A16-T4 aluminum alloy is not obvious between 10-4~102 s-1, but it is obvious between 102~103 s-1, decreasing with the increase of the plastic strain. In addition, this effect is obvious between 10-4~103 s-1, decreasing with the increase of the strain rate. Moreover, the fitted results of modified Johnson-Cook constitutive model agree well with the experiment results, representing well the alloy's dynamic mechanical properties, which can improve the precision of the model's rate-sensitive parameters over a wide range of strain rates.
  • loading
  • [1]
    赵寿根, 何著, 杨嘉陵, 等.几种航空铝材动态力学性能实验[J].北京航空航天大学学报, 2007, 33(8):982-985. doi: 10.3969/j.issn.1001-5965.2007.08.027

    Zhao Shougen, He Zhu, Yang Jialing, et al. Experiment investigation of dynamic material property of aluminum alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8):982-985. doi: 10.3969/j.issn.1001-5965.2007.08.027
    [2]
    Holt D L, Babcock S G, Green S J, et al. The strain-rate dependence of the flow stress in some aluminum alloys[J]. Transactions of the ASM: Transactions Quarterly, 1967, 60(2):152-159.
    [3]
    王洪欣, 查晓雄.3004铝的动态力学性能及本构关系[J].华中科技大学学报, 2011, 39(5):39-42.

    Wang Hongxin, Zha Xiaoxiong. Dynamic mechanical behavior and constitutive model of 3004 aluminum alloys[J]. Journal of Huazhong University of Science and Technology, 2011, 39(5):39-42.
    [4]
    张伟, 魏刚, 肖新科, 等.2A12铝合金本构关系和失效模型[J].兵工学报, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004

    Zhang Wei, Wei Gang, Xiao Xinke, et al. Constitutive relation and fracture criterion of 2A12 aluminum alloys[J]. Acta Armamentarii, 2013, 34(3):276-282. http://d.old.wanfangdata.com.cn/Periodical/bgxb201303004
    [5]
    张伟, 肖新科, 魏刚.7A04铝合金的本构关系和失效模型[J].爆炸与冲击, 2011, 31(1):81-87. doi: 10.11883/1001-1455(2011)01-0081-07

    Zhang Wei, Xiao Xinke, Wei Gang. Constitutive relation and fracture model of 7A04 aluminum alloys[J]. Explosion and Shock Waves, 2011, 31(1):81-87. doi: 10.11883/1001-1455(2011)01-0081-07
    [6]
    张正礼.2024铝合金动态力学本构模型构建[J].沈阳航空航天大学学报, 2014, 31(2):47-50. doi: 10.3969/j.issn.2095-1248.2014.02.011

    Zhang Zhengli. Construction of dynamic mechanical constitutive model of 2024 aluminum[J]. Journal of Shenyang Aerospace University, 2014, 31(2):47-50. doi: 10.3969/j.issn.2095-1248.2014.02.011
    [7]
    朱耀.AA 7055铝合金在不同温度及应变率下力学性能的实验研究[D].哈尔滨: 哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278756.htm
    [8]
    谢灿军, 童明波, 刘富, 等.7075-T6铝合金动态力学试验及本构模型研究[J].振动与冲击, 2014, 33(18):100-114. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418018

    Xie Canjun, Tong Mingbo, Liu Fu, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of Vibration and Shock, 2014, 33(18):110-114. http://d.old.wanfangdata.com.cn/Periodical/zdycj201418018
    [9]
    杨超, 朱涛, 肖守讷.列车车体铝合金动态力学性能及其对吸能的影响[J].中南大学学报(自然科学版), 2015, 46(7):2744-2749.

    Yang Chao, Zhu Tao, Xiao Shoune. Dynamic mechanical properties of aluminum alloy used in carbodies of trains and effect on energy absorption[J]. Journal of Central South University (Science and Technology), 2015, 46(7):2744-2749.
    [10]
    Yatnalkar R S. Experimental investigation of plastic deformation of Ti-6Al-4V under various loading conditions[D]. The Ohio State: The Ohio State University, 2010.
    [11]
    Wood P K C, Schley C A, Kenny S, et al. Validating performance of automotive materials at high strain rate for improved crash design[C]//9th International LS-DYNA Users Conference. Detroit, 2006.
    [12]
    白春玉, 刘小川, 周苏枫, 等.中应变率下材料动态拉伸关键参数测试方法[J].爆炸与冲击, 2015, 35(4):507-512. doi: 10.11883/1001-1455(2015)04-0507-06

    Bai Chunyu, Liu Xiaochuan, Zhou Sufeng, et al. Material key parameters measurement method in the dynamic tensile testing at intermediate strain rate[J]. Explosion and Shock Waves, 2015, 35(4):507-512. doi: 10.11883/1001-1455(2015)04-0507-06
    [13]
    余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011.
    [14]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541-547.
    [15]
    Kang W J, Cho S S, Huh H, et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation[J]. International Journal of Vehicle Design, 1999, 21(4):424-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caec5e2883f57b1720cefbd750b33c61
    [16]
    Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams[R]. Division of Applied Mathematics, Brown University, 1957.
    [17]
    Huh H, Kang W J, Han S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals[J]. Experimental Mechanics, 2002, 42(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=355b24d3ea891696370e4add7922dbb8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (4637) PDF downloads(389) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return